
УДК 004.053
DOI: 10.18523/2617-3808.2020.3.12-16

A. Hlybovets, O. Shapoval

INVESTIGATION OF THE RELATIONSHIP
BETWEEN SOFTWARE METRICS MEASUREMENTS

AND ITS MAINTAINABILITY DEGREE

The goal of this work is to practically apply methods of empirical engineering software, algorithms for
data collection and data analysis. The results include software measurement, analysis and selection of di-
rect and indirect metrics for research and identification of dependencies between direct and indirect met-
rics. Based on the received results, there were built dependencies between software metrics and software
expertise properties were selected by individual variation.

For measurement results analysis there were used primary statistical analysis, expert estimations, cor-
relation and regression analysis. Expert estimation is the dominant strategy when estimating software de-
velopment effort. Typically, effort estimates are over-optimistic and there is a strong over-confidence in their
accuracy. Primary data analysis is the process of comprehending the data collected to answer research
questions or to support or reject research hypotheses that the study was originally designed to evaluate.
Correlation analysis gives possibility to make some conclusions about which metrics and expert estimations
are much coupled, and which are not. Regression analysis involves both graphical construction and analyti-
cal research and gives an ability to make a conclusion about which metrics and expert estimations are the
most coupled. Analyzing regression lines for metrics of normal and nonnormal distributions give an ability
to identify pairs of ‘metric – expert estimation’.

There have been calculated and measured metrics relations for defining relation of such quality attrib-
utes as Understandability and Functionality Completeness. Understandability expresses the clarity of the
system design. If the system is well designed, new developers are able to understand easily the implementa-
tion details and quickly begin contributing to the project. Functionality Completeness refers to the absence
of omission errors in the program and database. It is evaluated against a specification of software require-
ments that define the desired degree of generalization and abstraction.

Relationship between metric and expertise includes building direct relationships between the metric and
expertise, indirect metrics and expertise. Additionally, it has been determined whether they have common
trends of the relationship between those direct metrics and expert estimates, indirect metrics and expert
estimates. The practical results of this work can be applied for software measurements to analyze what
changes in the code (affecting given metric) will cause increasing or decreasing of what quality attribute.

Keywords: Software quality attributes, Understandability, Functionality Completeness, Direct Metrics,
CYC, NOM, NOC, CALL, FOUT, Indirect Metrics, AMW, ATFD, BOvR.

© A. Hlybovets, O. Shapoval, 2020

INTRODUCTION

One of the main difficulties during software ar-
chitecture developing is to evaluate the available
design options and choose the best ones. Addition-
ally, even after the right decisions were made during
initial phase of the system development, it is crucial
to control quality of produced changes into the sys-
tem afterwards. One of the main reason of problems
with depicted needs is that developers are unclear
what criteria they should use to make design deci-
sions and why. Some developers rely on their previ-
ous engineering experience and personal preferenc-
es in methods, technologies, tools, and patterns. The
problem is that each member of the development
team has its preferences, opinions and assumptions.
As a result, it can be difficult to reach consensus

on the team and agree on some decisions. The de-
bate about subjective opinions and preferences can
not only damage the relationship between collea-
gues but may not necessarily lead to a software ar-
chitecture optimized to achieve business goals.

APPROACH DESCRIPTION

To overcome potential organizational and col-
laboration issues and define objective properties of
the software, the development team and the client
should agree about a defined set of quality attributes
of the system and approach of results measurement.
Within systems engineering, quality attributes are
realized non-functional requirements used to evalu-
ate the performance of a system. They are usually
Architecturally Significant Requirements that require

A. Hlybovets, O. Shapoval. Investigation of the Relationship Between Software Metrics Measurements and its Maintainability Degree 13

architects’ attention. From the perspectives of sys-
tem support possibilities, next software quality at-
tributes are important:

Understandability property

Software developers and accompanying per-
sons should read and understand the source pro-
grams and other types of program documents
in their work. The clarity of software documents
is therefore important. To understand the level of
comprehensibility of the software, we need to an-
swer the following questions [7]. When program-
mers try to reuse a software developed by other
programmers, the difficulty in understanding the
system limits reuse. It is not easy to measure the
comprehensibility of software, because understand-
ing is an internal process of people. There is the
notion of the “intelligibility integral” as a model
for measuring software intelligibility, which can
first extract the best software intelligibility value
from higher weight factors. In other words, we have
given an integrated dimension to measuring soft-
ware comprehensibility through the literature on
this subject [9].

Functionality completeness property

Completeness refers to the absence of omis-
sion errors in the program and database. It is eva-
luated against a specification of software require-
ments that define the desired degree of generali-
zation and abstraction (selective omission). “Data
completeness” is a measurable error between the
database and the specification [7]. Even highly
generalized databases can be “complete data” if
they contain all the objects described in the spec-
ification. A database is a “complete model” if its
specification is appropriate for the application.
Validity is a measure of the attribute of the accu-
racy of software functionality following the spec-
ification of requirements. Each attribute must
have a specific domain and range. Program vali-
dation is the process of determining whether the
values of program processes are sufficiently ac-
curate, complete, and logically compatible with
the intended use of the data. Verification often
consists of several steps, including logical checks,
accuracy estimates, and error analysis.

After the definition of expected software quality
attributes, it’s is required to come up with a set of
objective points that may answer to the question
of what degree of quality attributes compliance the
system is capable. In this task accomplishing we may
use the results of Empirical software engineering,

which is a part of software engineering that focuses
on gathering evidence, through measurements and
experiments involving software systems (software
products, processes, and resources). For example,
the degree of fulfillments of defined software quali-
ty attributes as understandability and functionality
completeness may be based on next metrics.
• Lines of code is a software metric used to meas-

ure the size of a program by counting the number
of lines in the text of the program source code.
SLOC is typically used to predict the amount of
effort that will be required to develop a program,
as well as to evaluate the performance or pro-
gramming effort after a software release. There
are two main types of SLOC measures: physical
SLOC and logical SLOC. The specific definitions
of these two indicators differ, but the most com-
mon definition of physical SLOC is the number of
lines in the source code of the program, including
comment lines. Blank lines are also included un-
less the lines of code in the section contain more
than 25 % blank lines. In this case, empty lines
exceeding 25 % are not considered in the lines
of code.

• Number of methods is used to calculate the aver-
age number of operations of all classes in a class.
A class must have several, but not excessive, op-
erations. This information is useful in identifying
a lack of primitiveness in class operations (pro-
hibition of reuse) and in classes that are slightly
larger than data types. For a class, this is a simple
count of the number of operations. For a package,
this is the average number of operations per package
class. This value should remain between 3 and 7.
This will mean that the class has operations, but
not too many. A value greater than 7 may indicate
the need for further object-oriented decomposi-
tion, or that the class does not have a consistent
goal. A value of 2 or less indicates that this is not
a class, but just a data construct [6].

• Number of Direct Descendants (NDD) This me-
tric is the number of direct descendants (subclas-
ses) for each class. It is believed that classes with
many children are difficult to modify, and, as a ru le,
they require additional testing due to the effect
of changes on all children. They are also consi-
dered more complex and error-prone, because
a class with many children may need to provide
services in more contexts and therefore should be
more flexible [8].

• Height of Inheritance Tree (HIT) for a class or
structure is the number of base classes (including
the System.Object class, so DIT> = 1). Types for
which HeigthOfInheritance is above 6 may be dif-
ficult to maintain. However, this is not the rule,

14 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

because sometimes your classes can inherit from
level classes that are of high importance for the
depth of inheritance. For example, the average
depth of inheritance for wireframe classes derived
from System.Windows.Forms.Control [8].

• Fan-out (FOUT) – the number of classes to call,
this is calculated as the sum of the FANOUT met-
ric (that is, the classes from which the operations
call the methods) for all user operations. This met-
ric provides raw information about distributed
activity calls in classes. Branching is a measure
of the ability of an electronic logic gate output
to control multiple inputs of other logic gates of
the same type. In most designs, the logic gates are
connected to form more complex circuits, and
usually, one output of the logic element is con-
nected to several inputs of the logic element. The
technology used to implement logic gates typi-
cally allows direct connection of gate inputs with-
out the need for additional interface circuits [6].

• Average Method Weight (AMW) – the average
statistic complexity of all methods in a class.

• Access to foreign data (ATFD) is the number of
external classes from which this class accesses at-
tributes directly or through access methods. Be-
cause ATFD measures how many external attrib-
utes are used by a class, it is clear that the higher
the ATFD for a class, the higher the likelihood that
the class is (or is about to become) a class of God.
It quantifies one of the key disharmonies of iden-
tity distortion, that is, the rude use of attributes
from other classes. As you can see, this is again
one of the reasons why the method is considered
disharmonious [6].

• Base Class Overriding Ratio (BOvR) – the num-
ber of methods of the measured class that override
methods from the base class, divided by the total
number of methods is the class. Quantifies the de-
gree of overriding and specialization of base class
methods [1].

• Tight Class Cohesion (TCC) – the relative num-
ber of method pairs of a class that access in com-
mon at least one attribute of the measured class.
Is the relative number of methods directly con-
nected via accesses of attributes [6].

• Weight of Class (WOC) – the number of ‘func-
tional’ public methods divided by the total num-
ber of public members.

ANALYSIS RESULTS

In order to make sure that the picked metrics
satisfy the expected software quality attributes we
can use a series statistical analysis tools like primary
statistical analysis, expert estimations, correlation
and regression analysis.

Primary data analysis is the process of compre-
hending the data collected to answer research ques-
tions or to support or reject research hypotheses that
the study was originally designed to evaluate. The
choice of data analysis methods depends on the type
of data being collected, quantitative or qualitative.

After the primary statistical analysis is complet-
ed a conclusion can be made about which metrics
and expert estimations belongs to normal distribu-
tion and which not.

Analyzing coefficient of excess and skewness,
I can assume that direct metric HIT, indirect metrics
TCC WOC and all expert estimations (reliability and
understandability) belong to normal distribution [1].
Figure 1 depicts an example of measurement re-
sults of project measurements for Lines of Code met-
ric per classes. As we can see, most of the classes
(about 4250) have for about 1000 lines of code.

Fig. 1. LOC Histogram

It the same time, most of that have an amount of
methods for about 1 to 50 (Figure 2). Which does
not correlate nicely with may postulates of good
software engineering.

Fig. 2. NOM Histogram

A. Hlybovets, O. Shapoval. Investigation of the Relationship Between Software Metrics Measurements and its Maintainability Degree 15

Fig. 3. NDD Histogram

The Average number of direct descendants is
some cases may be in the range up to 100 (Figure 3).

Correlation analysis gives possibility to make
some conclusions about which metrics and expert

estimations are much coupled, and which are not.
Analyzing correlation coefficient and Spearman co-
efficient, I chose several meanings that have most
tight relation. For example, TCC and WOC metrics
are the use with normal distribution.

Regression analysis is the last stage in the study
on the dependence of metrics and expert estimates.
It is carried out only under the condition that the
variance of the dependent variable (expert assess-
ment) must remain constant when changing the
value of the argument (metric), i.e. first, the vari-
ance of the expert assessment is determined for each
accepted value of the metric. Next, the regression is
identified. It involves both graphical construction
and analytical research. Graphical construction be-
gins with the definition of the correlation field. If the
correlation field is elliptical, a linear regression rela-
tionship is inferred. Next, the construction of linear
regression and its evaluation. If the constructed
points of the correlation field fall into a circle, it is
concluded that there is no dependence. If the corre-
lation field does not fit into a circle or ellipse but has
a different form, then a conclusion is made about the
nonlinear dependence in the regression line [4].

Fig. 4. Regression Line: HIT – Understandability

Conclusions

Empirical software engineering is a set of actions to
gain knowledge to better understand aspects of soft-
ware development. The result of the action is se-
veral statements about a certain list of problems.
These statements are answers to questions and con-
firm or refute hypotheses.
Identify four main areas of empirical research:

• Research related to the technical part (research
of the development environment, research of the

used software methods in development, research
of the software product itself);

• Research of development processes of each de-
veloper individually (everything that the devel-
oper does);

• Research of possibilities of integration of soft-
ware products made by developers;

• Study of interaction, coordination of the develop-
ment team (for example, whether the team works
as a single mechanism or simply as se parate de-
velopers who interact at some related stages).

16 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

As the results of the work, there can be named
tuples of ‘metric – expert estimation’ that are most
coupled: HIT – Understandability (for normal distri-
bution – linear dependence), LOC – Understandabil-
ity, BOvR – Understandability, BOvR – Functional

(for unnormal distribution – nonlinear dependence).
The practical results of this work can be applied for
software measurements to analyze what changes in
the code (affecting given metric) will cause increas-
ing or decreasing of what software property.

References

 1. Ebert, C., Dumke, R., Bundschuh, M., & Schmietendorf, A.
(2005). Best Practices in Software Measurement: How to use
metrics to improve project and process performance. Springer-
Verlag Berlin Heidelberg.

 2. Evolutionary architecture and emergent design: Emergent de-
sign through metrics. (2010). IBM Deloper Website. Ford N.
Retrieved from https://www.ibm.com/developerworks/library/
j-eaed6.

 3. Fenton, N., & Pfleeger, Sh. (1996). Software Metrics: A Ri-
gorous and Practical Approach. Cambridge: Cambridge Uni-
versity Press.

 4. Kan, S. (2002). Metrics and Models in Software Quality Engi-
neering. Second Edition. Addison Wesley.

 5. Laird, L., & Brennan, C. (2006). Software Measurement and Esti-
mation: A practical approach. New Jersey: John Wiley & Sons.

 6. Lanza, M., & Marinescu, R. (2006). Object-Oriented Metrics
in Practice. London: Springer-Verlag Berlin Heidelberg.

 7. Mens, T., & Demeyer, S. (2008). Software Evolution. Berlin:
Springer-Verlag Heidelberg.

 8. Shull, F., Singer, J., & Sjoberg, D. (2008). Guide to Advanced Em-
pirical Software Engineering. London: Springer-Verlag Limited.

 9. Sommerville, I. (2016). Software Engineering. Pearson Educa-
tion Limited.

Глибовець А. М., Шаповал О. О.

ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ
МІЖ ЗНАЧЕННЯМИ МЕТРИК ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

ТА МОЖЛИВІСТЮ ЙОГО СУПРОВОДУ

У роботі розглянуто один із методів контролю якості програмного забезпечення на основі
виділення необхідних атрибутів і метрик для його аналізу та супроводу, а також підходи до їх
підбору на основі первинного, кореляційного та регресійного аналізу даних.

Ключові слова: атрибути якості програмного забезпечення, зрозумілість, повнота функціональ-
ності, прямі метрики, LOC, BOvR.

Матеріал надійшов 10.06.2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)

