
UDC 004.4´2
DOI: 10.18523/2617-3808.2020.3.36-41

I. Morenets, A. Shabinskiy.

SERVERLESS EVENT-DRIVEN APPLICATIONS
DEVELOPMENT TOOLS AND TECHNIQUES

Serverless, a new cloud-based architecture, brings development and deployment flexibility to a new level
by significantly decreasing the size of the deployment units. Nevertheless, it still hasn’t been clearly defined
for which applications it should be employed and how to use it most effectively, and this is the focus of this
research.

The study uses Microsoft Azure Functions – one of the popular mature tools – because of its stateful
orchestrators – Durable Functions. The tool is used to present and describe four flexible serverless patterns
with code examples.

The first pattern is HTTP nanoservices. The example demonstrates how flexible can be the Function-as-
a-Service model, which uses relatively small functions as deployment units.

The second usage scenario described is a small logic layer between a few other cloud services. Thanks
to its event-driver nature, serverless is well-suited for such tasks as making an action in one service after
a specific event from another one. New functions easily integrate with the API from the first example.

 The third scenario – distributed computing – relies on the ability of Durable Functions to launch
a myriad of functions in parallel and then aggregate their results. and distributed computing. A custom
MapReduce implementation is presented in this section.

The last pattern described in this research significantly simplifies concurrent working with mutable data
by implementing the actor model. Durable Entities guarantee that messages are delivered reliably and in
order, and also the absence of deadlocks.

The results of this work can be used as a practical guide to serverless main concepts and usage sce-
narios. Main topic of future research was chosen to be the development of a full-fledged serverless applica-
tion using typical patterns to study the architecture in more depth.

Keywords: serverless, Function-as-a-Service, Microsoft Azure, event-driven, cloud computing.

© I. Morenets, A. Shabinskiy, 2020

Introduction

Serverless, also known as Function-as-a-Service
(FaaS) and nanoservices, is a promising new way
of building elastically scalable distributed applica-
tions. Best engineers are looking for ways to utilize
this technology in the most profitable ways, but it’s
still often looked down upon as not as powerful and
mature as other architectures, for example, micros-
ervices. The main goal of this work was to study
FaaS in detail and prove that in the future it can be-
come a de-facto standard for building many types of
applications.

Serverless analysis
FaaS features

Serverless can be similar to Platform-as-a-Ser-
vice but it has several fundamental differences. One
of the main ones is the significantly smaller deploy-
ment units. While Platform-as-a-Service typically
operates full applications, Function-as-a-Service uses
separate functions. This allows scaling each func-
tion independently which can be very useful, for ex-
ample, when a service has read and write operations
and the first one is significantly more popular [8].

Another dissimilarity with PaaS is that server-
less is inherently event-driven. They react to certain
predefined events such as a timer tick, a new mes-
sage in the queue, or an HTTP request. During the
lifecycle, they launch, run, and free allocated re-
sources. The following and previous instances are
completely independent.

This is connected with another important Ser-
ver less feature – developers pay not for some dedi-
cated computation units, but for the time their func-
tions were running. With the ability to scale separate
functions this allows for a significant expense opti-
mization [8].

Also, a serverless function cannot just call an-
other one directly but has to do it asynchronously
with special tools. Transition to purely asynchro-
nous communication is not simple and can be a sub-
stantial drawback depending on the application.

FaaS caveats

Nanoservices have to use message queues for
communication which can negatively impact not
only its simplicity and clarity but also the speed and
reliability.

I. Morenets, A. Shabinskiy. Serverless Event-driven Applications Development Tools and Techniques 37

When the number of such functions grows it be-
comes hard to comprehend their connections. Any
function can react to an event sent by another func-
tion which provides great potential for changes and
scalability because of loose coupling. At the same
time, even a simple sequential flow can be hard to
track.

Picture 1. Sequential serverless functions execution [9]

More complex scenarios are even harder to im-
plement with simple FaaS. For example, error-han-
dling and retries are stateful operations (as each try
needs to know about the previous ones) but server-
less typically is stateless. A FaaS solution might have
built-in ways of solving such problems but they are
not always flexible enough. For instance, it might be

desirable to set an exponential back-off strategy or
specify which fallback functions to run in case of
errors [9].

This and similar problems are often solved by
orchestration – specification of multiple functions’
execution order and conditions in one place. It al-
lows not only to easily track and modify a func-
tions chain but also to implement more complicat-
ed patterns such as error-handling, retries, task
parallelization, and others. Orchestration in one
way or another is supported by most main server-
less providers [9].

Main providers

AWS Lambda and Microsoft Azure Functions
are considered to be the leaders in the field, but
Tencent, Google, Cloudflare, and Alibaba are also
powerful players [3]. However, Microsoft has an ad-
vantage – Durable Functions, stateful orchestrators.
Usually, serverless orchestration is done on a high
level, such as with a finite state machine in AWS
Step Functions.

Picture 2. AWS Step Functions orchestration state machine [1]

38 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

Microsoft not only has an alternative for such
a high-level approach in the form of Azure Logic
Apps but also more low-level Azure Durable Func-
tions which allow describing complex scenarios in
code. This approach can be used to implement more
flexible and powerful patterns so it was chosen for
a detailed study.

Azure Functions introduction

Azure Functions are a part of the Azure cloud.
As of the first quarter of 2020, they support multi -
ple mainstream programming languages: C#, F#,
JavaScript, TypeScript, Java, Python, and Power-
shell. At the time it was apparent that bigger priority
was given to .NET and JavaScript, so all following
patterns were implemented with C#.

Triggers are a way to launch an Azure Function.
Examples are a timer, an HTTP request, a new mes-
sage in a queue, new entry in the database, or any
other supported event [4]. To connect a function to
another resource for additional inputs or outputs so-
called bindings are used. They allow writing to a
queue or a DB, returning an HTTP response, and
doing many other operations [4].

Durable Functions introduce four new function
types:

● Orchestrator – defines the order and the condi-
tions of actions’ execution. Abstracts calling ac-
tivities and sub-orchestrators, signaling entities,
and doing other actions.

● Activity – similar to ordinary functions but can
only be called by an orchestrator.

● Durable entity – operates on some internal state,
can respond to incoming signals by changing it,
returning something, or sending signals to other
entities.

● Client function – react to triggers and can launch
orchestrators and signal entities [5].
Neither orchestrators nor client functions really

“call” other functions, but rather abstract working
with message queues.

To save intermediate state orchestrators use
event-sourcing, so they have to be deterministic. It’s
prohibited to use random number generation, get-
ting local date and time, generating GUIDs, making
HTTP requests, and doing other non-deterministic
operations in them [7].

Patterns
HTTP nanoservices

The first pattern is HTTP nanoservices. Azure
Functions have a special HTTP request trigger and
an output binding allowing to return a response, but
other providers also usually support this scenario.
A simple blog backend was used for a demonstra-
tion, including three operations: getting a post by its
identifier, creating a new post, and deleting a post.

Request for a post by an identifier can look like
this:

public static IActionResult GetPost(
[HttpTrigger(methods: “get”, Route =
“posts/{author}/{id}”)] HttpRequest req,
 [CosmosDB(
 databaseName: “MyBlog”,
 collectionName: “Posts”,
 PartitionKey = “{author}”,
 Id = “{id}”
)]
 Post? post,
 string id
) =>
 post == null
 ? new NotFoundObjectResult(new {message
 = $”Can’t find a post with id {id}”})

 :(IActionResult) new OkObjectResult(post);

The function receives an HTTP request, the re-
quested post or null (if not found), and the id from
the request path. Additional Cosmos DB bindings
allow implicitly making a DB request with attrib-
utes metadata.

Post creation function is a bit more complicated:

public static async Task<IActionResult> AddPost(
[HttpTrigger(methods: “post”, Route =
“posts”)] HttpRequest req,
[CosmosDB(“MyBlog”, “Posts”)] IAsyncCol-
lector<Post> collector

)
{
var data = JsonConvert.DeserializeObject<
RequestBody?>(
await new StreamReader(req.Body).
ReadTo End Async()

);

await collector.AddAsync(new Post(data.
Author, data.Body, data.Title));

 return new OkResult();
}

This function receives a collector which allows
writing multiple entities into the database. But even
if the framework doesn’t provide helpful bindings,

Picture 3. Orchestrator “calls”
an activity function [9]

I. Morenets, A. Shabinskiy. Serverless Event-driven Applications Development Tools and Techniques 39

it’s always possible to use a DB client, as demon-
strated in the deletion operation example:

public static async Task<IActionResult>
DeletePost(
HttpTrigger(methods: “delete”, Route =
“posts/{author}/{id}”)] HttpRequest req,
[CosmosDB(“MyBlog”, “Posts”)]
DocumentClient client,
string author,
string id

)
{
var collectionUri = UriFactory.CreateDoc
umentCollectionUri(“MyBlog”, “Posts”);
var posts = client

.CreateDocumentQuery<Document>(collec
tionUri)
.Where(d => d.Id == id);

foreach (var doc in posts)
{
await client.DeleteDocumentAsync(
documentLink: doc.SelfLink,
options: new RequestOptions {Partition-
Key = new PartitionKey(author)}

);
}

return new OkResult();
}

This code looks more like a regular application
but with some Cosmos DB peculiarities. A client
can be used instead of any previously demonstrated
DB bindings to build more complex flows.

Service glue

The most classic serverless usage scenario is
a small logic layer between a few other cloud ser-
vices. Thanks to their event-driver nature FaaS are
well-suited for such tasks – after a specific event
from one service make an action with another one.

For example, it’s possible to send email notifica-
tions to an author’s subscribers when she makes
a new post by using a special mailing service:

public static async Task Emailer(
[CosmosDBTrigger(“MyBlog”, “Posts”)]
IReadOnlyList<Document> posts,
[CosmosDB(“MyBlog”, “Posts”)]
DocumentClient client,
[SendGrid(ApiKey = “SendGridKey”)] IAsyn
cCollector<SendGridMessage> collector

)
{
var authorsUri = UriFactory.CreateDocume
ntCollectionUri(“MyBlog”, “Posts”);

foreach (var doc in posts)
{
var author = doc.GetPropertyValue<string>
(“Author”);
var messages = client
.CreateDocumentQuery<Author>(authorsUri)
.Where(a => a.Name == author)
.Select(a => a.Subscribers)
.ToList()
.FirstOrDefault()
.Select(

subscriber => ComposeMessage(
from: “i.morenets@ukma.edu.ua”,
to: subscriber,
author: author,
title: doc.GetPropertyValue<string>
(“Title”)

)
);

foreach (var message in messages)
await collector.AddAsync(message);

}
}

This example uses a Cosmos DB trigger and two
bindings – an output for SendGrid and a universal
for Cosmos DB, which is another name for a client.

Distributed computations

Many tasks can be parallelized, from running
multiple independent business operations to pro-
cessing and transforming massive amounts of data.
With ordinary serverless, it’s usually not a problem
to launch many parallel functions, but it’s not so
trivial to aggregate their results. This problem can
be solved using orchestration and Durable Functions.

As a Proof of Concept was implemented a pro-
gram for text file word counting using own
MapReduce implementation. To launch the function
a user would need to upload a text file to the cloud
storage, which is also the output destination. Only
the orchestrator code is shown here:

public static async Task WordCountOrchestrator(
[OrchestrationTrigger] IDurableOrchestrationContext
ctx

)
{
var input = ctx.GetInput<WordCountInput>();
var batches = Batching.ToBatches(ToLines(input.
Content));

var mapResults = await Task.WhenAll(
batches.Select(
batch => ctx.CallActivityAsync<IList<
Result<string, int>>>(
functionName: nameof(WordCountMap),
input: batch

)
)

);

var groups = await ctx.CallActivityAsync<
IList<Group<string, int>>>(

functionName: nameof(WordCountGroup),
input: mapResults

);

var reduceResults = await Task.WhenAll(
groups.Select(
group => ctx.CallActivityAsync<Result<
string, int>>(
functionName:nameof(WordCountReduce),
input: group

)
)
);

await ctx.CallActivityAsync<string>(nameo
f(WordCountOutput), reduceResults);

}

40 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

Input data is evenly split into batches and they
are sent to map functions. In turn, they return (key,
value) pairs lists which are merged and grouped by
keys. These groups are sent to reducers each of
which returns one (key, value) pair. The resulting
list of pairs is written into a text file to the storage.

Implementing such architecture with Azure
Functions might not be the most optimal solution, as
the platform is not optimized for such tasks and
there are strict execution time and input data size
restrictions. At the same time, this experiment
proves that if the platform is capable of executing
such algorithms, it’s most likely suited for typical,
not so computation-intensive, business logic.

Actor model

Some applications need a state to work with and
some of them would use multiple threads to do so.
Alas, it’s hard to work with mutable data in a multi-
threaded environment, because it requires using
various synchronization mechanisms to keep data
consistent and not allow deadlocks and race condi-
tions. Using such mechanisms gave birth to a new
wave of problems to solve and one such solution is
the actor model. It introduces a new abstraction –
actors – entities which react to messages from other
entities and can make some actions in response:

● Change their internal state.
● Send messages to other actors.
● Create a new actor.
Actors use queues for message passing, obviat-

ing typical lock-based synchronization [2].
Azure Durable Entities are an implementation of

this model. They guarantee that messages are deliv-
ered reliably and in order and that blocking an entity
doesn’t block functions sending it signals [6].

A good example is bank accounts simulation.
Users can replenish their accounts, get their balance,
withdraw money, and make transactions between
two accounts:

public class Account : IAccount
{
public decimal Balance {get; set;}= decimal.
Zero;

public Task Replenish(decimal amount)
{

Balance += amount;
return Task.CompletedTask;

}

public Task<bool> Withdraw(decimal amount)
{

var canWithdraw = amount <= Balance;

if (canWithdraw)
Balance -= amount;

return Task.FromResult(canWithdraw);
}

public Task<decimal> GetBalance() =>
Task.FromResult(Balance);

public static Task Run([EntityTrigger]
IDurableEntityContext ctx) =>
ctx.DispatchAsync<Account>();

}

Durable Entities obey the same rules as regular
actors but with a few simplifications:

● Entity is implicitly created after it receives the
first signal.

● Client functions and orchestrators can also
message entities.

Function for replenishing an account may look
like this:

public static async Task<IActionResult>
Replenish(
[HttpTrigger(methods: “post”, Route = “rep -
lenish”)] HttpRequest req,
[DurableClient] IDurableEntityClient client

)
{
var data = JsonConvert.DeserializeObject<
RequestBody?>(
await new StreamReader(req.Body).ReadTo-
EndAsync()

);

await client.SignalEntityAsync<IAccount>(
entityKey: data.Account,
operation: account => account.Replenish
(data.Amount.Value)

);

return new OkObjectResult(new {message = “Suc-
 cessfully replenished”});

}

This function uses a simple HTTP trigger from
which it gets an entity key to signal an entity. If there
is a need to send a message and receive a response
an orchestrator must be used, as only they can await
a response. Withdrawal function:

public static async Task<bool> Withdraw(
[OrchestrationTrigger] IDurableOrchest-
rationContext ctx

)
{

var input = ctx.GetInput<WithdrawArgs>();
var account = ctx.CreateEntityProxy<IAc-
count>(input.Account);
var wasSuccessful = await account.Withdraw
(input.Amount);
return wasSuccessful;

}

This time the function awaits a response from an

entity and returns whether the withdrawal was suc-
cessful.

For a consistent change in multiple entities, one
should use so-called critical sections. They block

I. Morenets, A. Shabinskiy. Serverless Event-driven Applications Development Tools and Techniques 41

the entities but not other functions working with
them [6]:

public static async Task<bool> Transfer(
[OrchestrationTrigger] IDurableOrchestration-
Context ctx

)
{

var input = ctx.GetInput<TransferArgs>();
var fromEntity = new EntityId(nameof(Ac-
count), input.FromAccount);
var toEntity = new EntityId(nameof(Account),
input.ToAccount);

using (await ctx.LockAsync(fromEntity,
toEntity))
{

var fromAccount = ctx.CreateEntityProxy
<IAccount>(fromEntity);
var toAccount = ctx.CreateEntityProxy
<IAccount>(toEntity);

var hasEnoughFunds = await
fromAccount.Withdraw(input.Amount);
if (!hasEnoughFunds)

return false;

await toAccount.Replenish(input.Amount);
}

return true;
}

All messages and blocks end up in queues and
will be processed as soon as receiving entities are
unblocked. Also, critical sections cannot have dead-
locks. This model allows for reliable communica-
tions in a distributed concurrent environment while
being very transparent for developers.

Conclusion

This work presented an analysis of serverless as
an architecture and as a tool for building distributed
event-driven applications. As a potent FaaS imple-
mentation, Microsoft Azure Functions, and their
extension Azure Durable Functions, were also pre-
sented and demonstrated. Four different flexible
patterns were developed, exemplified, and explained
to understand important ideas by example.

Research results can be used as a practical guide
to serverless main concepts and usage scenarios.
More research should be done on the topic, includ-
ing building a real serverless application using typi-
cal patterns to study the architecture in more depth.

References
 1. Amazon Web Services. (n.d.). Create a Serverless Workflow

with AWS Step Functions and AWS Lambda. In Amazon Web
Services documentation. Retrieved from https://aws.amazon.
com/getting-started/hands-on/create-a-serverless-workflow-
step-functions-lambda.

 2. Charles. (2012). Hewitt, Meijer and Szyperski: The Actor Mo-
del (everything you wanted to know, but were afraid to ask)
[Video]. Channel 9. Retrieved from https://channel9.msdn.com/
Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-
Model-everything-you-wanted-to-know-but-were-afraid-to-ask.

 3. Hammond, J., Mines, C., Livingston, A., & Hartig, K. (2020).
The Forrester New Wave™: Function-As-A-Service Platforms,
Q1 2020. Forrester. Retrieved from https://reprints.forrester.com/#/
assets/2/108/RES155938/reports.

 4. Microsoft. (n.d.a). Azure Functions triggers and bindings con-
cepts. In Microsoft Azure documentation. Retrieved from https://
docs.microsoft.com/en-us/azure/azure-functions/functions-trig-
gers-bindings.

 5. Microsoft. (n.d.b). Durable Functions types and features. In Mic-
rosoft Azure documentation. Retrieved from https://docs.microsoft.
com/en-us/azure/azure-functions/durable/durable-functions-
types-features-overview.

 6. Microsoft. (n.d.c). Entity functions. In Microsoft Azure docu-
mentation. Retrieved from https://docs.microsoft.com/en-us/
azure/azure-functions/durable/durable-functions-entities.

 7. Microsoft. (n.d.d). Orchestrator function code constraints.
In Microsoft Azure documentation. Retrieved from https://docs.
microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-code-constraints.

 8. Roberts, M. (2018). Serverless Architectures. Retrieved from
MartinFowler.com. https://martinfowler.com/articles/server-
less.html.

 9. Shilkov, M. (2018). Making Sense of Azure Durable Functions.
Retrieved from https://mikhail.io/2018/12/making-sense-of-az-
ure-durable-functions.

 Моренець І. Е., Шабінський А. С.

МЕТОДИ І ЗАСОБИ РОЗРОБКИ ПОДІЄ-КЕРОВАНИХ ЗАСТОСУНКІВ
НА SERVERLESS АРХІТЕКТУРІ

Новий підхід до розробки застосувань – serverless – підіймає гнучкість розробки та розміщення на
новий рівень, значно зменшуючи одиницю розгортання. Однак у цьому напрямі досі не було точно ви-
значено, як і які застосування варто будувати, використовуючи його, чому і присвячено цю роботу.
В дослідженні використано Microsoft Azure Functions для демонстрування чотирьох гнучких патернів
із прикладами коду, таких як HTTP наносервіси та розподілені обчислення. Результати роботи мо-
жуть бути використані як прикладний практичний посібник з основних понять і патернів serverless.

Ключові слова: serverless, Function-as-a-Service, Microsoft Azure, подіє-керовані застосування,
хмарні технології.

Матеріал надійшов 08.06.2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)

