
УДК 004.45
DOI: 10.18523/2617-3808.2020.3.50-55

S. Sosnytskyi, М. Glybovets, O. Pechkurova

STATICAL AND DYNAMICAL
SOFTWARE ANALYSIS

The development of software built with quality has become an important trend and a natural choice
in many organisations. Currently, methods of measurement and assessment of software quality, securi-
ty, trustworthiness cannot guarantee safe and reliable operations of software systems completely and
effectively.

In this article statistical and dynamical software analysis methods, main concepts and techniques fami-
lies are overviewed.

The article has an overview of why combination of several analysis techniques is necessary for software
quality and examples how static and dynamical analysis may be introduced in a modern agile software
development life cycle.

As a summary of techniques for software analysis, represented on Table 1, due to the computability bar-
rier, no technique can provide fully automatic, robust, and complete analyses. Testing sacrifices robustness.
Assisted proving is not automatic (even if it is often partly automated, the main proof arguments generally
need to be human provided). Model-checking approaches can achieve robustness and completeness only
with respect to finite models, and they generally give up completeness when considering programs (the in-
completeness is often introduced in the modeling stage). Static analysis gives up completeness (though it
may be designed to be precise for large classes of interested programs). Last, bug finding is neither robust
nor complete. Another important dimension is scalability. In practice, all approaches have limitations re-
garding scalability, although these limitations vary depending on the intended applications (e.g., input
programs, target properties, and algorithms used).

Already implemented code could be analysed in a continuous integration environment by a tool like
SonarQube. Properly configured metrics and quality gates provide fast and detailed feedback on incre-
mental changes starting from development machine till highload enterprise production environments.
Software analysis helps to improve quality and development speed in Agile development life cycle with
reasonable cost.

Keywords: Software Static Analysis, Software Dynamical Analysis, Testing, Quality Assurance, SQALE
Mode, Continuous Code Analysis, SonarQube.

However, there is a significant difference between
software analysis and analysis of other types of en-
gineering structures. The computer executes the
software according to the language values and not
the nature. A computer is simply a tool that blindly
executes software exactly as it is designed. Any
execution behavior that deviates from our intent
could lead to a failure. So, to answer the question
of whether software design will work as we intend-
ed, we need knowledge on how we can analyze
the meaning of a software source. There is a formal
definition of software behavior, which is determi-
ned by the meanings, semantics of the language of its
source [5].

1. Software Analysis Challenges

Software analysis can be applied wherever un-
derstanding program semantics is important or ben-
eficial. Developers can use software analysis for
quality assurance, errors allocation and better design

© S. Sosnytskyi, М. Glybovets, O. Pechkurova, 2020

Introduction

Each engineering discipline has the main ques-
tion to answer, it is whether the design will work as
planned. This question is relevant whether we de-
velop microchips, bridges or spaceships. The answer
comes from the analysis of structures, using know-
ledge of nature about the projects. For example,
when we design a bridge, we analyze how different
forces (such as gravity, wind, and vibration) are ap-
plied and whether the structure is strong enough to
withstand of nature events. The same question ap-
plies to computer software. We want to make sure
that software application works as intended. We want
to ensure that the designed software does not fail in
the event of an unexpected termination. If the soft-
ware operated in an internet environment we want
to make sure that it will not be hacked and private
data be espoused. Regarding functions requirements,
we want to be sure that software realizes its func-
tional purpose.

S. Sosnytskyi, М. Glybovets, O. Pechkurova. Statical and Dynamical Software Analysis 51

decisions. Software maintainers can use program
analysis to understand legacy software structures
for safe changes introduction. System security can
use program analysis to proactively monitor mali-
cious code semantics. Software that operates with
data can use software analysis for the performance
improvements. Language processors such as com-
pilers need program analysis to translate the input
programs into optimized code [2].

Though the benefits of program analysis are ob-
vious, building a cost-effective program analysis
is not trivial, since computer programs are complex
and could be very large. For example, the number
of lines of smartphone applications frequently reaches
over half a million, not to mention larger software
such as web browsers or operating systems, whose
source sizes are over ten million lines. With seman-
tics, the situation is much worse because a program
execution is highly dynamic [5]. Given that soft-
ware is in charge of almost all infrastructures in life
the need for cost-effective program analysis tech-
nology is greater than ever before. We have already
experienced a sequence of accidents due to not iden-
tified mistakes in software. The long list includes
accidents like the large-scale Twitter outage (2016),
the Heartbleed bug (2014) and many more promi-
nent software accidents.

However building error-free software may be
unlikely feasible at least within reasonable costs and
time, cost-effective ways to reduce errors numbers
are on highest demand.

1.1. Families of Software Analysis Techniques

1.1.1. Testing: Checking a Set
of Finite Executions

When trying to understand how a system be-
haves, often the first idea that comes to mind is to
observe the executions of this system. In the case of
a program that may not terminate and may have in-
finitely many executions, it is of course not feasible
to fully observe all executions. Therefore, the test-
ing approach observes only a finite set of finite pro-
gram executions [5].

Testing has the following characteristics:
● Easy to automate
● Not robust
● Complete since a failed testing run will pro-

duce an execution that is incorrect

1.1.2. Assisted Proof:
Relying on User-Supplied Invariants

This approach is followed by machine-assisted
techniques. This means that users may be required
to supply additional information together with the
program to analyze [3].

Machine-assisted techniques have the following
characteristics:

● They are not fully automatic and often require
the most tedious logical arguments to come
from the human user;

● In practice, they are robust with respect to the
model of the program semantics used for the
proof, and they are also complete up to the
abilities of the proof assistant to verify proofs.

1.1.3. Model Checking:
Exhaustive Exploration of Finite Systems

Another approach focuses on finite systems, that
is, systems whose behaviors can be exhaustively
enumerated, so as to determine whether all execu-
tions satisfy the property of interest.

Model checking has the following characteristics:
● Automatic;
● Robust and complete with respect to the model.
An important caveat is that the verification is

performed at the model level and not at the program
level.

1.1.4. Conservative Static Analysis:
Automatic, Robust, and Incomplete Approach

Instead of constructing a finite model of pro-
grams, static analysis relies on other techniques to
compute conservative descriptions of program be-
haviors using finite resources. The core idea is to
finitely over-approximate the set of all program be-
haviors using a specific set of properties, the com-
putation of which can be automated [4].

Static analysis approaches have the following
cha racteristics:

● They are automatic;
● They are produces robust results, as they com-

pute a conservative description of program
behaviors, using a limited set of logical pro-
perties;

● They are incomplete because they cannot rep-
resent all program properties and enforce ter-
mination of the analysis even if the program
has infinite executions.

While a static analysis is incomplete in general,
it is often possible to design a robust static analysis
that gives the best possible answer on classes of in-
teresting input programs.

1.1.5. Bug Finding: Error Search, Automatic,
Unsound, Incomplete

Some automatic program analysis tools sacrifice
not only completeness but also robustness. The main
motivation to do so is to simplify the design and
implementation of analysis tools and to provide
lighter-weight verification algorithms. The techniques

52 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

1.2. Software Metrics

A software metric is a measure of a property of
software or its specifications. Quantitative measure-
ments are important in all areas, computer scientists
constantly trying to introduce similar approaches to
software development. The goal is to obtain objecti-
ve, reproducible and quantifiable indicators that can
contain numerous valuable programs for budget plan-
ning and planning, cost estimation, quality assurance
tests, software debugging, software performance op-
timization and optimal tasks for employees [5].

Developers found that metrics have become an
integral part of the software development process.

1.3. The SQALE Model

SQALE (Lifecycle Quality Assessment) is a method
to support the evaluation of software sources. This
is a general method that is independent of language
and source analysis tools.

The indicators of the model represent the costs.
These costs can be calculated in a unit of work, in a
unit of time, or in a unit of money. In all cases, the
values of the indices are on a scale of the type of rela-
tionship. You can use them to perform all permissible
operations for this type of scale. For each element of
the source code artifact hierarchy, the cost of restora-
tion associated with that characteristic can be esti-
mated by adding all of the restoration costs associated
with the characteristics of the characteristic. The indi-
ces of SQALE characteristics are the following [7]:

● Testability Index : STI
● Reliability Index : SRI
● Changeability Index : SCI
● Efficiency Index : SEI
● Security Index : SSI
● Maintainability Index : SMI
● Portability Index : SPI
● Reusability Index : SRuI.

The method also defines a global index: for each
element of the hierarchy of source code artifacts, the
restoration costs that relate to all characteristics of
the quality model can be estimated by adding all the
restoration costs that are associated with all require-
ments of the quality model.

This derived measurement is called: SQALE
Quality Index [7].

2. Tools overview
2.1. iPlasma

iPlasma is an integrated environment for analyz-
ing the quality of object-oriented software systems
that includes support for all required analysis phas-
es: from model extraction (including scalable analy-
sis for C ++ and Java) to monitoring based on high-
level metrics or code duplication. iPlasma has three
main advantages:

● Extensibility of the supported analysis
● Integration with other analysis tools
● Scalability as used in the past to analyze large

projects the size of millions of lines of code.

2.2. SonarQube as a platform
for continuous analysis

SonarQube is an open-source platform for con-
tinuous inspection of code quality to perform auto-
matic reviews with static analysis of code to detect
bugs, code smells, and security vulnerabilities in 20+
programming languages. SonarQube offers reports
on duplicated code, coding standards, unit tests,
code coverage, code complexity, comments, bugs,
and security vulnerabilities.

SonarQube can record metrics history and pro-
vides evolution graphs. SonarQube provides fully
automated analysis and integration with Maven,
Ant, Gradle, MSBuild and continuous integration
tools (Atlassian Bamboo, Jenkins, Hudson, etc.).

used in such tools are often similar to those used in mo del
checking or static analysis, but they relax the robust-
ness objective. Such tools are usually applied to im-
prove the quality of noncritical programs at a low cost.

Bug-finding tools have the following character-
istics:

● Automatic;
● Neither robust nor complete, instead.

Table 1
An overview of program analysis techniques

Techniques Automatic Robust Complete Object Execution

Testing Yes No Yes Program Dynamic
Assisted proving No Yes Yes/No Model Static
Model checking of finite-state model Yes Yes Yes Finite Model Static
Model checking at program level Yes Yes No Program Static
Conservative static analysis Yes Yes No Program Static
Bug finding Yes No No Program Static

S. Sosnytskyi, М. Glybovets, O. Pechkurova. Statical and Dynamical Software Analysis 53

3. Projects Analysis

3.1. Project overview

Art of Illusion is a free, open source 3D model-
ling and rendering studio. Many of its capabilities
rival those found in commercial programs. High-
lights include subdivision surface based modelling
tools, skeleton based animation, and a graphical lan-
guage for designing procedural textures and materi-
als [1].

3.2. Project metrics

Main directed metrics measured in iPlasma are
shown in Figure 1.

Each line has a colored percentage. The percent-
age is derived from the ratio of the number in this
line to the number below.

Table 2
Metrics definition

Code Description

NDD Number of direct descendants
HIT Height of inheritance tree
NOP Number of packages
NOC Number of classes
NOM Number of methods
LOC Lines of code

CYCLO Cyclomatic complexity
CALL Calls per method

FOUT Fan out (number of other methods called
by a given method)

The numbers indicate the ratio. Colors indicate
where the conditions fit into industry-standard areas
(derived from numerous open-source projects). Each
ratio is either green (inside the area), blue (below
the area), or red (outside the area). For the Struts
code base, NDD and CYCLO are outside of the in-
dustry standards for these values, and LOC and NOM
are listed below.

Table 3
Industry ranging for metrics

Low Medium High

CYCLO / Line 0.16 0.20 0.24
LOC / method 7 10 13
NOM / class 4 7 10
NOC / package 6 17 26
CALLS / method 2.01 2.62 3.20

FANOUT / call 0.56 0.62 0.68

Metrics Pyramid for ArtOfIllusion generated in
iPlasma is shown on Figure 1.

The metrics on this pyramid for ArtOfIllusion
project indicate that:

▪ Class hierarchies tend to be tall and narrow
▪ Classes tend to be:
o rather large (i.e. they define many methods)
o organized in rather fine-grained packages

▪ Methods tend to:
o be rather long yet having a rather simple

logic (i.e. few conditional branches)
o call several methods from few other classes

(i.e. low coupling dispersion)

3.3. Continuous Code Analysis
with the SonarQube

The SonarQube uses an evolved SQALE model.
Bugs, Vulnerabilities and Code Smells are main

metrics to measure.
● Bugs: Code that is demonstrably wrong or highly

likely to yield unexpected behaviour.
● Vulnerabilities: Code that is potentially vulne-

rable to exploitation by hackers.
● Code Smells: Will confuse maintainers or give

them pause. Not only ratings, but also approxi-
mate remediation efforts.

3.3.1. Three Lines of Analysis

Figure 2. SonarQube Three Lines of Analysis

First line is a SonarLint, that runs in IDE and
analyses new code and highlights issues if any.

Second, pull request analysis. When a pull re-
quest (PR) is submitted to the repository user com-
ment the changed code with any new issues. After it
is up to the manual reviewer to decide if the issues

Figure 1. iPlasma Metrics Pyramid
for ArtOfIllusion

54 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

are critical or accepted in the context before merg-
ing the PR.

Finally, quality gates and leak management.
If previous prevention fails, there is an ability to
set up a collection of go/no-go conditions that in-
dicate whether or not the project is releasable –
Quality Gate. In case the project fails the Quality
gate then the tool automatically informs about it.

Security and Reliability ratings are based on the
severity of the worst open issue in that domain [6]:

● E – Blocker
● D – Critical
● C – Major
● B – Minor
● A – Info or no open issues

For Maintainability the rating is based on the ra-
tio of the size of the code base to the estimated time
to fix all open Maintainability issues [6]:

● <=5% of the time that has already gone into
the application, the rating is A

● between 6 to 10 % the rating is a B
● between 11 to 20 % the rating is a C
● between 21 to 50 % the rating is a D
● anything over 50 % is an E

3.3.2. SonarQube results for ArtOfIllusion project

The SonarQube provider comprehensive code
analysis. The tool found 223 bugs, 125 vulnerabilities,
15 security hotspots. All this categories are marked
with rating E (Figure 3.), which means Blocker and
must be fixed before next release (Figure 4.).

Figure 3. SonarQube Overall Code Analysis Results

Figure 4. SonarQube Bug Analysis Results

S. Sosnytskyi, М. Glybovets, O. Pechkurova. Statical and Dynamical Software Analysis 55

Conclusions

As a summary of techniques for software anal-
ysis, represented on Table 1, due to the computa-
bility barrier, no technique can provide fully auto-
matic, robust, and complete analyses. Testing sac ri-
fices robustness. Assisted proving is not automatic
(even if it is often partly automated, the main proof
arguments generally need to be human provided).
Model-checking approaches can achieve robust-
ness and completeness only with respect to finite
models, and they generally give up completeness
when considering programs (the incompleteness
is often introduced in the modeling stage). Static
analysis gives up completeness (though it may be
designed to be precise for large classes of inter-
ested programs). Last, bug finding is neither ro-
bust nor complete. Another important dimension is
scalability. In practice, all approaches have limita-
tions regarding scalability, although these limita-
tions vary depending on the intended applications

(e.g., input programs, target properties, and algo-
rithms used).

Comprehensive software analysis needs usage of
a number of techniques depending on software com-
plexity and quality attribute requirements like securi-
ty, performance, resilience and other. Analysis should
be done on all stages during the development life cycle.

During the design phase, architecture design tools
can easily find architectural bottlenecks in the soft-
ware and prevent them cheaply and quickly before
the start of development and save resources on cost-
 ly fixes.

Already implemented code could be analysed in
a continuous integration environment by a tool like
SonarQube. Properly configured metrics and quality
gates provide fast and detailed feedback on incre-
mental changes starting from development machine
till highload enterprise production environments.
Software analysis helps to improve quality and de-
velopment speed in Agile development life cycle
with reasonable cost.

References

 1. Art of Illusion. Retrieved from http://www.artofillusion.org.
 2. Coquand, T., & Huet, G. (1988). The calculus of constructions.

Information and Computation, 76, 95–120.
 3. Godefroid, P., Klarlund, N., & Sen, K. (2005). DART:

Directed automated random testing. In Conference on
Programming Language Design and Implementation (PLDI)
(pp. 213–223).

 4. Patrick, C. (2020). Principles of Abstract Interpretation. MIT
Press.

 5. Rival, X. (2020). Introduction to Static Analysis. MIT Press.
 6. SonarQube Metric Definitions. Retrieved from https://docs.

sonarqube.org/7.1/MetricDefinitions.html.
 7. SQALE Model. Retrieved from https://en.wikipedia.org/wiki/

SQALE.

Сосницький С. О., Глибовець М. М., Пєчкурова О. М.

СТАТИЧНИЙ ТА ДИНАМІЧНИЙ АНАЛІЗ
ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

Розроблення програмного забезпечення зі вбудованою якістю стало важливою тенденцією і при-
родним вибором у багатьох організаціях. У наш час методи визначення та оцінки якості, безпеки,
надійності програмного забезпечення не можуть гарантувати безпечну й надійну роботу програм-
них систем повністю і ефективно.

У цій статті розглянуто статистичні й динамічні методи аналізу програмного забезпечення,
основні поняття і методи сімейства. Досліджено, чому для якості програмного забезпечення необ-
хідне поєднання декількох методів аналізу, і наведено приклади того, як статичний і динамічний
аналіз може бути впроваджений у сучасний життєвий цикл розроблення гнучкого програмного
забезпечення.

Ключові слова: статичний аналіз програмного забезпечення, динамічний аналіз програмного за-
безпечення, тестування, забезпечення якості, режим SQALE, безперервний аналіз коду, SonarQube.

Матеріал надійшов 16.05.2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)

