
УДК 004.89
DOI: 10.18523/2617-3808.2020.3.69-74

K. Gorokhovskyi, O. Zhylenko, O. Franchuk

DISTRIBUTED SYSTEMS TECHNICAL AUDIT

Modern enterprise systems consist of many deployment artifacts, thus, microservices architecture is
extremely popular now. The use of distributed systems is rapidly growing despite the increased complex-
ity and the difficulty of building. The main reason for such a trend is that the advantages of distributed
systems outweigh their disadvantages. Nevertheless, product release into the market is not a final step of
software development lifecycle. Next important step is maintenance that continues much longer than
development. System failures and delays in finding and fixing a problem can cause huge financial and
reputational expenses. In addition, the new features introduced due to changes on the market should take
place on time.

Prior to releasing a product to market, we would like to know in advance possible technical gaps
to understand what we can expect and maybe fix some issues in order to save time and money in future.
In other words, we should be able to make a decision, if the product is ready for launch or not, relying on
some data. Such analysis is as well necessary when we obtain ownership for an existing product. Techni-
cal audit helps to find out technical debt and assess risks related to maintenance and extension of the
system. It should be considered as mandatory activity during release preparation and ownership transfer.
Well-defined criteria would help to conduct an audit smoothly and find out most of the technical debt.
Properly conducted technical audit reduces risks of problems after release but it does not guarantee
commercial success of product or absence of problems at all.

In this article we will define what distributed systems are, we will review Monolithic, Microservices
and Serverless architectures, describe what are quality attributes and what should be taken into ac-
count during technical audits. Next, we will deep dive into the technical audit process, specify what
aspects of the system must be considered during an audit. Then we will iterate over checklists items in
order to provide guidelines based on the best practices in industry which helps to prepare for software
system audit.

Keywords: Distributed systems, Monolithic, Microservices, Serverless, Quality attributes, Observability,
Portability, Security, Maintainability, Technical audit, Checklist.

© K. Gorokhovskyi, O. Zhylenko, O. Franchuk, 2020

INTRODUCTION

It is really difficult to imagine enterprise system
that consist of only one deployment artifact. Great
example is microservices architecture which is ex-
tremely popular now. But when we want to release
product to market or we receive existing product
on ownership, we need to know technical gaps in
advance to understand what we can expect and
maybe fix some issues upfront in order to save time
and money in future.

In this work we defined what technical audit
is and what aspects of distributed systems we need
to consider. Also, we provided checklists that are
based on best practices in IT industry that can help
to conduct audit smoothly.

Distributed systems overview

Initially applications rely on persistent connec-
tions and stateful communication. All heavy pro-
cessing was on backend part. The frontends were
thick however we had rich user interface, complex

business logic and data access. Separation of con-
cern was used to manage complexity. There was
three common layers: presentation, business and
data access. But dependencies between them be-
came so complex so it was real challenge to intro-
duce new functionality and still all the functions are
managed and served in one place. Monolithic ap-
plications have lack modularity because it is one
large code base. If something even small must be
updated or changed developer access the same co-
de base and make changes
in the whole stack at once.

Microservices architec-
ture breaks single unit into
a collection of smaller ones
which are not depend on
each other. These units are
considered as separate ser-
vices each of them has its
own logic, storage and they
concern on specific func-
tions.

Figure 1. Layers of mono-
lithic architecture

70 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

Following types of a technical debt are covered
by technical audit:

• Production technical debt. It nest high risks
for a product. It focuses on observability
(e.g., effort to find and fix an issue), portabil-
ity (e.g., effort to release a new version) and
security (e.g., any security vulnerabilities).

• Development technical debt. It nest moder-
ate risks for a product. It focuses on maintain-
ability (e.g., effort to introduce changes into
existing system).

• Involvement technical debt. It nest moderate
risks for a product. It focuses on understanda-
bility (e.g., effort to introduce a new employee
on project).

There are 2 general cases when you need to per-
form audit:

• During release preparation. Team want to
know problems and potential issues that might
be in production after release.

• During ownership transfer. When team take
ownership on existing product, they need to
know gaps that can lead to problems in pro-
duction. Also knowing problems help to pro-
vide accurate estimation on new feature intro-
duction.

There are several main phases of audit:
• Kickoff. Define scope and schedule of audit.
• Preparation. Define and approve checklists.
• Execution or examination. Check system com-

pliance according to prepared checklists.
• Reporting. Build report and include all findings.

Figure 4. Phases of technical audit

You should take into account that main goal of
audit is to identify technical debt. Investigation for
possible fixes is not mandatory part of a system.
After report is ready it should be reviewed and after
that decision must be made what issues are critical
and requires immediate actions.

Quality attributes

First of all, it is better to start with classification
of requirements.

All requirements encompass the following cate-
gories:

• Functional requirements
• Non-functional requirements
	Quality attributes
	Constraints

Figure 2. Microservice architecture

Serverless is a cloud computing execution model
where the cloud provider dynamically manages the
allocation and provisioning of servers. A serverless
application runs in stateless compute containers that
are event-triggered, ephemeral (may last for one
invocation), and fully managed by the cloud pro-
vider [3]. Pricing is based on the number of execu-
tions.

Considering different architectures, we see that
main difference in monolithic and distributed archi-
tecture is possibility to release different functional-
ity independently. Microservices and serverless are
not panacea but nowadays distributed systems are
most common style for enterprise systems. You must
take into account that together with granularity of
your system you increase system complexity on sup-
porting infrastructure.

Figure 3. Difference between monolithic,
microservice and serverless architectures [7]

Technical audit overview

Audit is a formal procedure to measure a techni-
cal debt and a quality level of the system. The main
purpose of audit procedure is checking compliance
of a software system (or a software component) and
an infrastructure with well-known and up-to-date
practices in industry.

K. Gorokhovskyi, O. Zhylenko, O. Franchuk. Distributed Systems Technical Audit 71

Functional requirements define a system or its
component. They describe what the system must
perform and how to behave or react on stimulations
at runtime. These requirements describe specific
functionality that define what a system is supposed
to do (they involve calculations, technical details,
data manipulation and processing, etc.)

Quality attribute requirements are qualifications
of functional requirements or of the overall product.
They usually answer questions like ‘how fast the
function should be performed’ or ‘how resilient it
should be to incorrect input’ can be considered as
qualifications of functional requirement. The over-
all product qualifications are such items as ‘time
to deploy the product’ or ‘how fast new feature must
be introduced’.

Constraint is a design decision taken with zero
degree of freedom. This decision that has already
been taken and we cannot change it. The exam-
ples of constraints are decisions to use a particu-
lar language or reuse certain module, or manage-
ment directive to use specific cloud provider like
AWS. Such decisions usually based on some ex-
ternal factors like company has long term invest-
ment in AWS.

Observability

Observability is a measure of how well internal
states of a system can be inferred from knowledge
of its external outputs. Usually developers confuse
monitoring and observability. Observability is a
property of a system in contrast to monitoring
whereas monitoring refers to the process where we
translate application and infrastructure logs and
metrics data in order to be able to provide mean-
ingful actions.

If system and its components don’t adequately
externalize their state, then even the best monitoring
can fail.

Portability

Portability is the ability to deploy a product in
various environments in a predictable way. It in-
cludes containerization, configuration and versioning.
Docker is default tool for containerization. Confi-
guration and versioning are implemented by custom
solution and may be various by standards in dif-
ferent organizations.

Security

Security is the ability to resist to incorrect or ma-
licious behavior of client applications.

Here is the list of the main security areas:
1. Authentication and authorization of clients.
2. Translation, interpretation and protection

of data.
3. Configuration management and dependency

management.
4. Monitoring, logging and auditing.

There several projects which provide list of top
vulnerabilities. OWASP [5] and CWE [1] are most
popular. These lists should be considered during
system development. OWASP Top 10 is the most
popular list which represents a broad consensus
about the most critical security risks to web appli-
cations.

Maintainability

Maintainability is the ability to change a prod-
uct with a predictable effort. Static analysis is com-
mon approach that used to control maintainabili-
ty. However, these tools may not provide enough
checks to ensure maintainability, so code review
practice is recommended also.

The major recommendations are:

Minimize source code

For example, in Java Lombok library can be used
auto-generated getters, setters and constructors to
enable dependency injection (Spring Framework).

Prefer declarative configurations

 For example, use declarative clients instead of
request builders to consume data from HTTP ser-
vices.

Prefer infrastructure solutions

 For example, configure a reverse proxy instead
to enable CORS. Do not use an application frame-
work for this purpose.

Technical audit checklists
Observability checklist

Use correlations. Unique correlation identifier
must be assigned to each invocation. This identifier
must be propagated to all services, message brokers
and event buses. It used to identify side effects in
system for single user intent.

Enable monitoring. Metrics must be collected
and aggregated in single place. Most important met-
rics are latency, throughput, errors and utilization.
By default, next tools are used: Prometheus – to store
metrics, Grafana – to visualize metric.

72 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

Enable logging. Collect logs from every part of
a system in single place. All requests from external
services, message brokers, event buses and data
stores must be traced. Sensitive information must be
masked. By default, next tools are used: Fluentd – to
aggregate logs, Elasticsearch – to store logs, Kiba-
na – to visualize logs.

Use log context for instances. It is useful to log
application version and configuration properties ex-
cept secrets on startup. It reduces time on trouble-
shooting.

Enable error handling. Provide a default error
handler. Next fields must be included into the error
response for all error handlers: application name,
instance identifier, correlation identifier and error
code.

Use health checks. Each service should have
endpoint which provide information about service
health status. By default, HTTP method GET is used
which returns HTTP status 200.

Enable tracing. Trace must be propagated to all
services, message brokers and event buses. This in-
formation must be collected on aggregation tool.

Log context for invocations. Log a security and
operation identifiers for each invocation. These iden-
tifiers allow to extract the contextual information
about client and operational behavior.

Enable error tracking. All errors should be
tracked. Logs also contains error but it is essential
to have additional separate place for errors that pro-
vides possibility to send notification if necessary.

Portability checklist

Enable containerization. Images should be used
to deliver components. Configure repository and ver-
sion for images.

Use immutable tags. Use immutable tags. Avoid
to use latest tag.

Follow to best practices for images. Use dock-
er best practices to build images since Docker is de-
fault tool for containerization.

Use external configuration. Do not embed con-
figuration inside image. Configuration file must be
separate from image. There should be possibility to
override configuration properties via environment
variables.

Use versioning. Versioning must be used for im-
ages and also recommended for configurations files.

Don’t embed infrastructure into services. SSL
termination, rate limiting, CORS and so on should
be configured using infrastructure not application.

Define quotas for CPU and memory. Leaks in
resources for single service should not crush ma-

chine on which other service might run. Also,
it helps orchestrator to find appropriate node in
cluster faster.

Security checklist

Segregate services by security traits. Services
should be segregated by access type (public, inter-
nal and so on) and by required privileges. PoLP
principle should be used (principle of least privi-
lege).

Validate inbound data. Validate all incoming
requests, responses, messages and events before
start processing them.

Don’t expose sensitive data. Exposed sensitive
data may be used by attackers to compromised this
data also this may lead to fines from regulators.
Do not show stack trace to client. This can be used
to enable negative impact on system.

Control dependencies versions. Regularly up-
date dependencies because updates nest fixes for vul-
nerabilities.

Maintainability checklist

Use branching strategy. It helps developers
work separately and do not affect each other. All
changed in main branch should be done through
pull requests.

There are three primary strategies that is widely
used: GitHub Flow, GitLab Flow, Git Flow. More
information can be found in [6].

Enable build automation. Use single build
script for local developers’ machine and remote
automation builds. All infrastructure tasks such as
static code analysis should be removed form build
script.

Use unit tests. Test coverage may be different
depends on organization standards but recommend-
ed coverage is higher than 60 %.

Define feedback activities. Define all activities
and quality gates that must be passed before code
will be transferred to next stage. It helps shift feed-
back to the left of feedback activity diagram and
find out problems earlier.

The cost of detecting and fixing defects in soft-
ware increases exponentially with time in the soft-
ware development workflow. Fixing bugs in the
field is incredibly costly, and risky – often by an
order of magnitude or two. The cost is in not just in
the form of time and resources wasted in the pre-
sent, but also in form of lost opportunities of in the
future [2]. For example, it is much harder fix bug
that was found in production than during execution
of unit tests and even during execution of automa-
tion e2e tests.

K. Gorokhovskyi, O. Zhylenko, O. Franchuk. Distributed Systems Technical Audit 73

Fi
gu

re
 5

. F
ee

db
ac

k
ac

tiv
iti

es
 d

ia
gr

am
 e

xa
m

pl
e

74 ISSN 2617-3808. Наукові записки НаУКМА. Комп’ютерні науки. 2020. Том 3

Use code conventions. It improves readability
of the code. It is recommended to have single con-
vention in scope of all system but at least it should
exist in scope of single team. Code convention tem-
plate can be exported into file and shared with team.
All modern IDEs support such feature.

Reduce code duplication. It is recommended to
have less than 3 % of code duplication. Static code
analysis cannot find semantic code duplication that
is why code review is necessary.

Remove dead code. Remove unused or commen-
ted code. Previous implementation can be reverted
from git log history.

Ensure methods and classes maintainability.
Use clean code principles. These principles were
des cribed in a book Clean Code by Robert C. Mar-
tyn [4].

Summary

Maintenance of the system after release is very
important part of software life cycle. System fail-
ures and delays in finding and fixing a problem can
cause to huge financial and reputational expenses.
Also, the introducing of new features due to changes
on the market should take place on time.

Technical audit helps to find out technical dept
and asses risks due to maintenance and extension of
the system. It is a mandatory during release prepa-
ration and ownership transfer. Well defined criteria
will help to conduct audit smoothly and find out
most of technical dept. It does not guaranty success
of product or absence of problems but properly con-
ducted technical audit reduce risk to have them after
release.

References

 1. Common Weakness Enumeration. (2019). 2019 CWE Top 25
Most Dangerous Software Errors. Retrieved from https://cwe.
mitre.org/top25/archive/2019/2019_cwe_top25.html.

 2. DeepSource Corp. (2019). Exponential cost of fixing bugs. How
the cost of finding and fixing defects increases with time. Re-
trieved from: https://deepsource.io/blog/exponential-cost-of-
fixing-bugs.

 3. Gnatyk, Romana. (2018). Microservices vs Monolith: which ar-
chitecture is the best choice? Retrieved from https://www.n-ix.
com/microservices-vs-monolith-which-architecture-best-choice-
your-business.

 4. Martyn, Robert C. (2008). Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall.

 5. OWASP. (2020). Top Ten Web Application Security Risks. Re-
trieved from https://owasp.org/www-project-top-tenjf.

 6. Porto, Patrick. (2018). 4 branching workflows for Git. Retrieved
from https://medium.com/@patrickporto/4-branching-workflows-
for-git-30d0aaee7bf.

 7. Solanki, Jignesh. (2017). Evolution of Serverless: Monolithic
Microservices FaaS. Retrieved from https://dev.to/jignesh_sim-
form/evolution-of-serverless-monolithic-microservices-faas-
3hdp.

Гороховський К. С., Жиленко О. В., Франчук О. В.

ТЕХНІЧНИЙ АУДИТ
РОЗПОДІЛЕНИХ СИСТЕМ

У статті наведено визначення розподілених систем і розглянуто Monolithic, Microservice та
Serverless архітектури. Описано процес технічного аудиту та уточнено аспекти системи, які
потрібно враховувати під час аудиту. Розглянуто атрибути якості. Наведено контрольні списки
для аудиту, основані на найкращих практиках у галузі, що допомагає підготуватися до технічно-
го аудиту.

Ключові слова: розподілена система, Monolithic, Microservice, Serverless, Quality атрибут, спосте-
режливість, портативність, безпека, ремонтопридатність, аудит, контрольний список.

Матеріал надійшов 10.06.2020

Creative Commons Attribution 4.0 International License (CC BY 4.0)

