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IMAGE SHADOW REMOVAL BASED
ON GENERATIVE ADVERSARIAL NETWORKS

Accurate detection of shadows and removal in the image are complicated tasks, as it is difficult to un-
derstand whether darkening or gray is the cause of the shadow. This paper proposes an image shadow re-
moval method based on generative adversarial networks. Our approach is trained in unsupervised fashion
which means it does not depend on time-consuming data collection and data labeling. This together with
training in a single end-to-end framework significantly raises its practical relevance.

Taking the existing method for unsupervised image transfer between different domains, we have re-
searched its applicability to the shadow removal problem. Two networks have been used. The first network
is used to add shadows in images and the second network for shadow removal. ISTD dataset has been used
for evaluation clarity because it has ground truth shadow free images as well as shadow masks. For shadow
removal we have used root mean squared error between generated and real shadow free images in LAB
color space. Evaluation is divided into region and global where the former is applied to shadow regions
while the latter to the whole images. Shadow detection is evaluated with the use of Intersection over Union,
also known as the Jaccard index. It is computed between the generated and ground-truth binary shadow
masks by dividing the area of overlap by the union of those two. We selected random 100 images for valida-
tion purposes. During the experiments multiple hypotheses have been tested. The majority of tests we con-
ducted were about how to use an attention module and where to localize it.

Our network produces better results compared to the existing approach in the field. Analysis showed that
attention maps obtained from auxiliary classifier encourage the networks to concentrate on more distinctive
regions between domains. However, generative adversarial networks demand more accurate and consistent

architecture to solve the problem in a more efficient way.
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1. Introduction

Shadow is a common visual phenomenon when
the object overlaps illumination source. Detected
shadows can provide the important clues for better
visual scene understanding [1; 2]. However, they
can degrade the performance of algorithms in sev-
eral computer vision spheres as object detection
[17], tracking [11] and intrinsic image decomposi-
tion [15]. Therefore, effective shadow removal
could give a performance boost for these tasks.

Shadow removal is a very challenging task be-
cause it is not enough to detect and remove the
shadow, we also need to fill the background so it
looks naturally for both human and a computer sys-
tem.

Current works can be divided into two groups:
classical and deep learning-based. Classical solu-
tions used user input or hand-crafted features for
shadow detection [7; 3] after which they tried to
make the shadow region match the background.
Meanwhile, deep learning-based approaches use
neural networks for extracting high level features
and background filling. One of the early works [21]
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used three different neural networks operating in
different contexts for more quality features extrac-
tion. Later, Hu et al. [9] explored direction-aware
spatial context for this task to compensate the lack
of data. After that, Wang et al. [24] used adversarial
learning by stacking two networks together where
one is used for shadow detection and one for shadow
removal. More recently, Ding et al. [5] constructed
the framework which used attention maps and re-
current learning. Other approach [25] argued that
earlier works were not directly constructed for
shadow removal task and proposed the novel archi-
tecture with hierarchical features aggregation.
However, all these methods used the supervised
data to train and thus demanded the tedious collec-
tion and annotation processes. For the similar rea-
son these approaches are also constrained with the
complexity of the scenes. It is also argued that such
approach may lead to change in illumination be-
tween shadow and shadow-free images [27].
Recently, the unsupervised solution was pre-
sented [27] where the problem was formulated in
unsupervised mapping learning between two do-
mains —shadow and shadow-free —using CycleGAN
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[9] framework. First CGAN detects and removes the
shadow while the other tries to generate it given the
image and shadow mask as the input. Shadow mask,
therefore, is received by running the Otsu’s algo-
rithm on the difference between generated and input
image. The final results are competitive with those
outlined above and significantly higher than ge-
neral image-to-image translation with CycleGAN.
However, this approach is not directly constructed
to fit the shadow removal task, thus it has problems
such as leaving the artifacts on the shadow boundar-
ies and using binary masks for detected shadows.
One more problem that may have consequences in
a real-world application is that shadow generator
network chooses the mask at random, so we could
receive the image with inappropriate shadow on it.

2. Generative adversarial networks (GAN)

GAN is a framework for estimating the gene-
rative models that was firstly proposed by Ian J.
Goodfellow et al. [6]. It consists of two networks
where generator network G captures the data distri-
bution and discriminator network D estimates the
probability of the sample came from data distribu-
tion. In an initial variant G took the noise vector
(usually, from uniform distribution) as the input try-
ing to generate a sample that will “trick” the dis-
criminator D. This framework corresponds to a mi-
nimax game(two-player non-cooperative game)
where G is maximizing the probability of D making
mistake. To bring it formal we can consider such
minimax game in which we should optimize a fol-
lowing loss function:

minmaxL(D, G) = Ex.p,n[logD(x)] + (1)
+ Ezep,z[1 — logD(G(2))]

where p, is real data distribution over sample x
while p, is a noise distribution over noise z. This
work provoked a significant amount of research
due to its capacity to generate high-quality sam-
ples. It was further improved by introducing Con-
ditional GAN [18] which uses the label informa-
tion to present the multi-modal solution. Thus, re-
searcher can tune what kind of sample the network
should generate.

CGANs were successfully used in learning the map-
pings between the domains, for example pix2pix
[10] approach can handle multiple vision tasks as
day to night, summer to winter or aerial to map in a
single framework by introducing the pairs of images
from each domain. However, it cannot handle the
domains with no one-to-one mappings as for style
transfer etc.

Hence, for unsupervised domain mapping
CycleGAN [27] was firstly proposed by using the
cycle consistency loss between domains. Still, it suf-
fered from mode collapse generating one sample for
different inputs. For that reason there was a research
conducted [1; 14] to extend the initial solution to
cope with the “many-to-many” mapping with the
use of latent variables.

There has been a significant amount of work
done and now GANSs can generate high-quality im-
ages that are hardly distinguishable from the real
ones. They are particularly good at face generation
[12], style transfer [24; 3], inpainting [19; 20], do-
main transfer/adaptation [27; 1; 14] and are also
used for shadow removal/detection [24; 5].

3. Method

We divide training into two parts: one to learn
from shadow images and one to learn from shadow-
free ones.

3.1. Learning from shadow images
Adversarial learning

Let /; be an image from shadow Xy domain. We use
a generator network G, s to translate an image to
shadow-free deomain and obtain Iy. Gy r network
also includes an auxiliary classifier x5, where #g(x)
represents the probability of x taken from shadow
domain [13].

Then, we use the corresponding discriminator Dy
to discriminate whether the data comes from Xy or
G- r(Xy). This network also consists the auxiliary
classifier 7, that is aimed to solve the same task as
the discriminator itself. We should also notice that
Least Squares GAN objectives are used for more
stable training, thus the adversarial loss will look
like this:

Lgan = Ex-x, [(Dr(x))?] + ©)
+ Exx, [(1 = D (Gor ()))?]

CAM attention

Auxiliary classifier 7, is used in G, s to distin-
guish between domains and is inspired by CAM
(Class activation maps) [24].

Let Cf be a k-th feature map of Gsl_,f output
from [-th layer. Then, C¥¥ is the value at (i, /) posi-
tion and we want to learn the importance weights
for each feature map by using the global pooling
layers (i.e. average, max). Thus, we obtain:

as =ws*Cs = {(WkCk|1 <k <n} 3)

where 7 is a number of feature maps and w¥ is an
importance weight for the k-th feature map.
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We are learning those weights from:
ki
Ns=0 (%Wskzcs 9 “
ij

To make #g distinguish between domains the
corresponding cross-entropy loss is optimized:

Lyt = —(Exex,[log(ms(x))] +
+ Epox, [log(1 = ns(0))])

Then, ag (3.2) is transferred as the input to the
following layer of the network and the learning con-
tinues.

Attention a is aggregated to be transferred as
attention map 4; to Gy, :

As = Y 3ag™e (6)

hw ¢

)

where we sum the values over the channels c.
Auxiliary classifier Moy is also integrated in Dyto
decide whether the data comes from Xy or G, 1(Xj):
D

Lcam = Ex~Xf[(an(x))2] +

(N
+ Exox, [(1 = 7p, (G p (00))?]

Cycle consistency and identity loss

If we only use adversarial loss for learning then
the mapping is highly under-constrained. That is
why we present the inverse transformation G, s to
transform the images back and encourage the con-
tents to be the same.

As we outlined above generator network Gros
additionally takes attention map 4, and generated
mask M; [9] as the input (concatenating to the image
as additional channels). To preserve the consistency
between the generated shadow image and the origi-
nal one we take the same attention map and shadow
mask extracted from shadow removal generator
G 1. This allows to produce multiple shadow im-
ages from one shadow-free raising the generaliza-
tion capacity. Shadow mask is a binary map where
-1 indicates non-shadow region while 1 — the sha-
dow region. Attention map is also normalized to
[-1,1] and is used for complementing the shadow
mask.

Then, we formulate following cycle-consisten-
cy loss:

A

cycle

= Ex~X3[||Gfas(GSHf(x)'As' Ms) - x”l] (8)

However, using only adversarial and cycle-con-
sistency losses gives the generators freedom to
change colors on images without being penalized.
That is why researches in original work [12] intro-
duced an identity loss to regularize the generators to
be near an identity mapping when the inputs from

target domain are provided. Furthermore, this ap-
proach allows our solution to remove/generate
shadows only when the image from proper domain
is given:

Lig = Eyox,[11Gros(x, An, M) — x||4] 9

where 4,, M, are constructed only from -1 (non-
shadow) which penalizes the network for generating
the shadows on images where the shadow is already
presented.

3.2. Learning from non-shadow images

Given the generator network Grss and also at-
tention map A4 together with shadow mask M we
can define corresponding losses for inverse transfor-
mation. We have the same adversarial loss where
generator is maximizing the probability of discrimi-
nator to make mistake:

L gy = Ex-x [(Ds())?] +
+ Exex, [(1 = Ds(Gros(1)))?]

(10)

However, we do not integrate the CAM module
into the inverse transformation networks due to sta-
bility issues and because this approach gives better
results in experiments.

The cycle-consistency constraint also stays the
same: we generate shadow image from shadow-free
X and then using Gy, s to restore the image back
and optimize the networks:

Lo = Exex, [1Gsnp (Gros(x, As, M) = X|1]

cycle —

(11)

Finally, we adopt the G5, s to produce shadow
free image given the real shadow free image from
Xp. That means that we encourage the network to
not remove anything if there is nothing to remove.

L{dt = Ex~Xf[||GS—’f(x) - x”l] (12)

3.3. Maps generation
Shadow mask generation

Our generator Gy, s uses the shadow mask as
the input, so we can condition network with it and
generate multiple shadows from one shadow-free
image. We follow the same approach as [9] and con-
struct the threshold binarizer B between generated
shadow free image I}and original image /:

M;= B(Iy, Iy) (13)

Thus, when we obtain a pair of images we com-
pute the difference I}— I and compute the threshold
to assign the values greater that it as 1 and those less —
with -1. The threshold is computed using Otsu’s algo-
rithm which separates the shadow from non-shadow
regions by maximizing the intra-class variance.
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Attention map generation

Attention map A, is received from auxiliary
classifier 7, by applying the pooling operation to
feature maps. In our approach we are using average
(GAP) together with max pooling (GMP) layers to
get the complete picture. GAP is able to find all dis-
criminative regions on the image while GMP is en-
couraged to find only one [26]. So we decided to
combine the best from two worlds by applying both
GAP and GMP and concatenating the correspond-
ing results.

So, additionally we have:

(14)

M = o (Twsmax(Cs))
k

After that we concatenate the outputs of 7, and
nm and feed them to 1x1 convolutional layer with
the following ReLU non-linearity to restore the
input dimensions due to channel axis concatena-
tion.

The output from these operation is followed by
aggregation to obtain an attention map Ay which
we additionally scale to [-1,1] range for inva-
riance.

During the training process those maps are gen-
erated for each shadow image in the same way as
binary shadow masks.

3.4. Losses

To conclude, we present the final loss function
which is a weighted sum of adversarial, CAM, cy-
cle-consistency and identity losses outlined above
in both architectures:

; f
min max = Aggy(Lgan + Loay) +
Gs—f,GfosMsDs.DfTD acr GAN

- D
+ Acam(Liar}:z + chm (15)
+/15ycle(Li;cfle + L}cc;csle) + Aidt(l_fdt + Ls{dt

where Agay = 1, Aegm = 500, Agycre = 10, Aiqr = 5.

3.5. Shadow removal
generator network

The network architecture is following a Johnson
et al. [11] and reminds the encoder-decoder archi-
tecture without skip-connections. Encoder is con-
structed from two down-sample convolutional lay-
ers, it is important that there are no pooling layers
and down-sampling is implemented using convolu-
tions with stride 2.

Then, we have a bottleneck layer where most of
work takes place. It includes nine residual blocks

with linear dilation growth starting from the sixth
layer. Dilation factors should be tuned depending
on the receptive field size. In our experiments, we
have made an assumption that the first part of the
network would extract the shadow region operating
on the local level while the second part will be re-
sponsible for filling this region, thus it will need a
background information. For that reason we added
receptive field growth at the end but in the way it
does not exceed the input image size.

Bottleneck layer also integrates an attention CAM
module that we described above. We inserted it be-
fore the receptive field growth (i.e. shadow removal
process takes place) so it would help to localize the
shadow in a more efficient way.

Finally, decoder is here to restore the image
back to initial size by the use of transposed con-
volutions, it is important that network is learning
to make the downsample and upsample operations
itself.

Shadow free discriminator

We will remind that discriminator Dynetwork is
used for discriminating the real shadow free images
from those generated. Architecture for it is follow-
ing the idea of PatchGAN [16] where the network is
not looking at the whole image but on patches (usu-
ally, 70x70) of it deciding whether the patch is real
or not. We additionally complemented it with CAM
attention module which is trained to solve the same
task as the discriminator itself. CAM attention is
operating before the final layer. Discriminators are
not using dilated convolutions.

Shadow generator network

This network is also following the Johnson et al.
[11] architecture and has dilated convolutions in it
which may help in shadow generation, however we
have not seen any difference in experiments. We did
not use an attention module here because it expo-
ses an unstable training.

Generator uses shadow free image together with
attention map and shadow mask(binary map) where
three of them are concatenated by channel axis.
Attention and mask are scaled to [-1,1] to improve
invariance.

Discriminator Dy is also a PatchGAN with 70x70
patches with no attention module in it.

Training strategy

We used Rectified Linear Unit (ReLU) non-linea-
rity and reflection padding for generator networks.
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Instance normalization (IN) is utilized for all net-
works just after the convolutional layer. The excep-
tions are input and output layers where we want to
encourage the networks to learn the normalization
by themselves. We are adding hyperbolic tangent
(Tanh) function in generator network to output the
values from [-1,1] range.

All networks are using spectral normalization
[19] as this proved to improve GAN learning.
It constrains the Lipschitz constant by restricting
the spectral norm of each layer.

We also have used different heuristics to stabi-
lize training by smoothing the target label from 1 to
0.9 and dividing the discriminator loss by 2 to fur-
ther address slow learning. Moreover, we are updat-
ing the discriminator with the history of previously
generated samples as it is stated to reduce the model
oscillations [27]. The same approach is used for
shadow mask, attention pairs which are added to a
separate Queue.

All the parameters are initialized using zero-
centered Gaussian distribution with 0.02 standard
deviation. For data augmentation, we resize the im-
ages to 286x286 cropping them randomly to be
256x256 and flipping them horizontally with 0.5
probability. The method is implemented using
PyTorch framework.

4. Evaluation

Dataset. There are many community datasets
for shadow detection and removal. Mostly, they are
supervised and not large enough for deep learning
solution but there are some which fits just well:
ISTD [24], SRD [14]. There is also an unpaired
one where more complex scenes are presented
USR [13].

In our experiments we only use ISTD dataset for
evaluation clarity because it has ground truth shad-
ow free images as well as shadow masks. We does
not correct our evaluation method to cover the is-
sues with illumination and color change between
shadow and shadow free images. In future, we will
extend our solution to USR dataset as being more
appropriate to our solution.

Metrics. In our evaluations we aim to estimate
how good our network is in removing the shadows
as well as detecting them. We are also concerned
about the global image consistency. That is why we
present three metrics.

For shadow removal we follow recent works
[14; 9; 4] and use RMSE(root mean squared error)

between generated and real shadow free images
in LAB color space. Evaluation is divided into re-
gion and global where the former is applied to
shadow regions while the latter to the whole im-
ages. In general, lower RMSE score tells about bet-
ter results.

Shadow detection is evaluated with the use of
10U (Intersection over Union), also known as the
Jaccard index, which is a widely used metric for
image segmentation and object detection tasks. It is
computed between the generated and ground-truth
binary shadow masks by dividing the area of over-
lap by the union of those two. Greater IOU indicates
better shadow detection.

5. Experimental
results

Our method is trained on supervised dataset
that is why the unpaired strategy is used: the first
one is sampled from shadow domain while the
second one is randomly chosen from the shadow
free. We also selected random 100 images for va-
lidation purposes. During the experiments multi-
ple hypothesis were tested and the most success-
ful of them are shown in Table 1. Global RMSE
tells the quality of shadow removal coupled with
background restoration. Shadow region RMSE
directly estimates the removal comparing shadow
regions. IOU is aimed to evaluate the shadow de-
tection quality comparing with ground-truth sha-
dow mask. All scores are evaluated after the mo-
dels are trained on validation set of images. Other
solutions from the field except the MaskSha-
dowGAN [9] are not included but would be tested
in the future.

As soon as we added two components to this
work we wanted to test how they affect the genera-
tion quality.

We saw that method with dilated convolutions
stays on roughly the same level as the one with-
out them. However, we decided to take the one
with dilated convolution as we expected it may
improve the results after the attention would be
added.

The majority of tests we conducted were about
how to use an attention module and where to lo-
calize it. At first, we have added the attention to
all networks following the original approach [13].
The results improved drastically given by RMSE
score in both global and local contexts.
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Table 1
Quantitative comparison of algorithms
Methods Global RMSE Shadow region RMSE 10U
MaskShadowGAN [26] 3.0099 23.6703 80.0894
Dilated generators dilation in Gy, r and Gf—, 3.1253 26.9753 75.5382
CAM attention for all networks in all G and D 2.3902 15.0150 73.8277
CAM attention for shadow-removal networks in Gy, f 23139 15.7047 71.1142
and Dy giving A; as input to Dy (*)
CAM attention for shadow-removal networks. Shadow
generator using attention map and binary mask 4g with 2.3261 15.5398 70.3951
no My to (*)
CAM attention for shadow-removal networks. Shadow
generator uses weights from shadow removal for re- 2.2436 15.6087 70.7965
balancing CAM weights from G, rto G
Table 2
Examples of images
Shadow image Ground truth Initial CAM attention

However, IOU showed lower results for the rea-
son we will go into details below. Adding attention
module presented new instability issues while con-
verging faster. We also encountered with messy out-
puts compared to initial methods where the shadow
removal generator not only identified the shadow but
the background behind it. Thus, it could be seen that

shadow detection quality decreased significantly in-
dicated by lower I0U.

For these reasons, we removed an attention mo-
dule from Gy, s and Dy which helped to suppress the
instability but still it was a way higher than solutions
without attention. The qualitative results improved a
little but still there was a problem with over-detection.
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Hence, the next solution added an attention map
transfer from shadow removal generator to the input
of the opposite one. We aimed to complement the
binary mask with an attention map to make the learn-
ing more consistent. As the result, it reduced the
model oscillations and raised the generated samples
quality. However the shadow detection performance
declined even more.

Attention map transfer showed the capacity to
improve the results that is why we researched other
ways to share this information with shadow genera-
tor network. For instance, shadow mask M, was
removed from the input of G, so the network
should have used the information from attention
map A, only. This resulted in again messy results
with roughly the same metric values.

Rather than integrating the attention informa-
tion to the input of the network, we researched the
ways to insert it inside. After solid amount of ex-
perimenting we came up with transferring the
CAM weights directly to rebalance the corre-
sponding feature maps in Gy, ;. This improved the

shadow removal performance, however increased
the problem with over-detection.

6. Conclusions

In this paper, we presented a solution to unsu-
pervised shadow removal problem with the use
of generative adversarial networks with attention
modules and multi context aggregation. Our net-
work produces better results compared to the exist-
ing approach in the field. Analysis showed that at-
tention maps obtained from auxiliary classifier
encourage the networks to concentrate on more
distinctive regions between domains. However,
GANs demand more accurate and consistent archi-
tecture to solve the problem in a more efficient
way. We have also showed how attention modules
can improve the quality of shadow removal while
introducing the problems with the shadow over-
detection. For that reason we will research further
to address the problem of more consistent archi-
tecture in the future work.
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BUJAJIEHHSA TIHEA HA 305PAKEHHI
3 BUKOPUCTAHHSAM I'EHEPATUBHUX
SMATAJIBHUX MEPEXK

Toune susagnents mini Ha 300pAdICeHHI € CKAAOHUM 3A80AHHAM, OCKIIbKU 00CUMb 8AANCKO 3PO3YMIMU,
Yy 3amemuerHs abo cipuil KOip € npuyuHow mini. Y yitl cmammi 3anponoHo8aHo Memoo 8UOalLeHHs
minel Ha 300padCceHHi 3 BUKOPUCHIAHHAM 2eHepamUGHUX 3MA2albHUX HeupoHHux mepeoic. Hasuanns
Mmepedici 8i00ysaecmbes 6e3 Haeasdy, MoOMo He 3aneNCums 610 MpyOOMICmMKO20 30upants OaHux i map-
Ky8aHHsa Oanux. Memoo eudanenus minell Ha 300padiceHHi OA3YEMbCA HA MemOoOi HeRIOKOHMPOIbHO2O
nepeoanHs 300pasicenv Migic pisnumu domenamu. byno euxopucmarno 08i mepeoici: neputy — 01 000a-
6anHs minell y 300paxcenns, a opyey — 0as udanenus mineu. Habip oanux ISTD euxopucmosyeanu 0ns
YimKocmi OYiHIBAHHA, OCKIIbKU 6IH MICTMUMb OCHOBHI 300PAICEHHs, WO He MArmb MiHi, a Makoic
MIHbOBI MACKU.

KurouoBi cjioBa: reHeparrBHI 3MarajibHI MEepeKi, BUIAJICHHS TiHEH, TeHEpyBaHHS TiHEH.
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