
УДК 004.27
DOI: 10.18523/2617-3808.2024.7.25-30

B. Artiushenko

A NUCLEOLUS-BASED APPROACH FOR CLOUD RESOURCE
ALLOCATION

Cloud computing has transformed organizational operations by enabling flexible resource allocation
and reducing upfront hardware investments. However, the growing complexity of resource management,
particularly for computing instances, has led to challenges in cost control and resource allocation. Fair
allocation policies, such as max-min fairness and Dominant Resource Fairness, aim to distribute resources
fairly among users. In recent years, the FinOps framework has emerged to address cloud cost management,
empowering teams to manage their own resource usage and budgets. The allocation of resources among
competing product teams within an organization can be modelled as a cooperative game, where teams with
competing priorities must negotiate resource allocation based on their claims and the available budget.

The article explores cloud resource allocation as a cooperative game, particularly in situations where
the total budget is insufficient to meet all teams’ demands. Several resource allocation methods are dis-
cussed, including the proportional rule and the nucleolus-based approach, which seeks to minimize the
coalitions’ incentives to deviate. The nucleolus method offers a stable and fair solution by distributing re-
sources in a way that maximizes stability and reduces the likelihood of coalitions deviating from the overall
allocation. This approach ensures that no team is allocated more than its claim and maintains fairness by
adhering to principles such as claim boundaries, monotonicity, and resource constraints. Ultimately, the
nucleolus-based method is proposed as an effective solution for allocating cloud resources in a cooperative
and stable manner, ensuring that resource allocation is both fair and efficient.

Keywords: cloud computing, resource allocation, bankruptcy issue, cooperative game, nucleolus.

Introduction

Cloud computing is a game-changing technology that revolutionized the way many organizations oper-
ate. With cloud technologies, organizations can operate more flexibly, easily scaling and reducing up-front
investments in hardware. Thus, the cost of cloud computing usage could quickly escalate [3].

Resource allocation is an important part of any shared system, not just clouds. One of the most popular
allocation policies proposed so far has been max-min fairness, which maximizes the minimum allocation
received by a user in the system. Assuming each user has enough demand, this policy gives them an equal
share of resources. Round-robin, proportional resource sharing, and weighted fair queueing are known al-
gorithms of this approach. A shared-system specialized allocation method, like Dominant Resource Fair-
ness, was proposed for multiple resource types [4] and could be used for clouds as well [2].

These methods approach the idea of fairness, where each user is allocated more or less in proportion to
their demand and weight of resources. In other words, allocation is viewed as a non-cooperative game in
which alliances cannot be formed, or all agreements need to be self-enforcing [1].

In recent years a new profession, ‘FinOps practitioners,’ emerged, along with a framework to address-
cloud cost management. One of the main FinOps principles is that ‘individual feature and product teams are
empowered to manage their own cloud usage within their budget.’ [6]

In other words, each team should take part in computing resource allocations for their needs and manag-
ing costs. Whereas some resources (object storage, selective databases) are dynamically allocated, comput-
ing instances require provisioning time and are often are allocated in advance.

Usually, resources need to be allocated among product teams. These teams have competing priorities,
and each product team is focused on its respective product, not the system as a whole. The teams can form
coalitions, and there is a possibility of external enforcement of cooperative behavior (formal or informal).
Even though ‘common goods’ could be facilitated within the organization, factions could easily form and
could be considered.

© B. Artiushenko, 2024

26 e-ISNN: 2617-7323. Наукові записки НаУКМА. Комп’ютерні науки. 2024. Том 7

Cloud Resource Allocation as a Cooperative Game

Suppose there are N product teams, each demanding computing resources such as CPU, memory size,
and memory bandwidth. Within serverless computing, most resources can scale on demand, while some
need to be allocated in advance. Let’s consider allocating computing instances in a specific cloud.

Most major cloud vendors provide a selection of instances with various hardware and price options. In
a cloud environment, all resources can be summarized by a single number: price (per usage). Table 1 pro-
vides an example of pricing for various general-purpose computing instances (EC2) of AWS in the US East
(Ohio) retrieved on 2024-04-01. To eliminate cents, let us consider hourly prices multiplied by 168 (weekly),
with $/w representing USD per week.

Table 1. AWS EC2 prices and key performance indicators

Instance v CPU Clock Speed Memory EBS Mbps Price $/w
m5.large 2 3.1 GHz 8 GiB <2,120 17
m4.large 2 2.4 GHz 8 GiB 450 18

m5.xlarge 4 3.1 GHz 16 GiB <2,120 34
m4.xlarge 4 2.4 GHz 16 GiB 750 37

m5.2xlarge 8 3.1 GHz 32 GiB <2,120 68
m4.2xlarge 8 2.4 GHz 32 GiB 1,000 74
m5.4xlarge 16 3.1 GHz 64 GiB 2,120 137
m4.4xlarge 16 2.4 GHz 64 GiB 2,000 148
m5.8xlarge 32 3.1 GHz 128 GiB 5,000 274

m4.10xlarge 40 2.4 GHz 160 GiB 4,000 336
m5.12xlarge 48 3.1 GHz 192 GiB 7,000 411
m4.16xlarge 64 2.4 GHz 256 GiB 10,000 538
m5.16xlarge 64 3.1 GHz 256 GiB 10,000 548
m5.24xlarge 96 3.1 GHz 384 GiB 12,000 774

Each product team can select the main characteristics of instances and choose desired instances based on
the available list of computing instances and actual needs. Let us assume all product teams use the same
utilization factor and other metrics to make their decision. For example, there are three teams (N=3) with
specific requests (see Table 2), and allocation is on a weekly basis. Then, based on each team’s request,
FinOps (assuming it is responsible for resource allocation) estimates the total budget. For simplicity, let us
assume it is also calculated on a weekly basis.

The task is: how should we allocate resources when the total requested budget (total demand) is
higher than the available budget (estate)? Obviously, if the estate is greater than the total demand, it is not
a problem.

Table 2. Product teams’ desired instances

Team Main characteristic Asked instance Ask, $/w
1 Memory m5.8xlarge 274
2 EBS m4.16xlarge 538
3 CPU m5.24xlarge 774

Total 1,586

For example, let the estate be $600/w, whereas the total demand (see Table 2) is $1,586/w. Please notice
that Team 3’s request ($774/w) alone is higher than the available budget ($600/w).

This task can be rewritten as a claims problem (also called a bankruptcy problem). For that, the budget
should be considered as a divisible source. Each product team is a player, and each team’s desired instance
price can be considered its claim or request. If all product teams use the same metrics and have the same
value, we can consider a claim to be a team’s weight as well. The available budget is the estate. Deficits are
the differences between a team’s claims and awards.

Is cloud resource allocation between product teams an example of a cooperative game? A cooperative
game is one where players are able to make enforceable contracts outside of those specifically modelled
within the game. FinOps should find a solution that minimizes the chances of any team ‘going upstairs’ or
teams merging/splitting just to cheat the system. In other words, no single team or coalition will leave the
grand coalition (all teams combined). Thus, the problem can be considered a cooperative game. Excess is

B. Artiushenko A nucleolus-based approach for cloud resource allocation 27

the difference between the payment given to the coalition for its allocated resources and the value the coali-
tion would receive by deviating.

What are the properties of a good solution?
1. Claim boundaries: No team gets more than its claim or less than $0.
2. Equal treatment of equals: If two teams have the same claim, they should be given (roughly) equal

awards.
3. Monotonicity: Teams with higher original claims should not receive fewer awards.
4. Resource monotonicity: If the estate increases, each team should not get less.
5. Cloud constraints: A finite number of available resource types and possible awards.

Maximum Award

Let us start with the goal of finding a solution that maximizes the total award alone. The solution can be
found by brute force (see Table 3. Hereafter, a coalition is described by a tuple of teams, for example, (1,2,3)
represents a grand coalition for all three teams. When all coalitions have only positive excesses, then devia-
tion is not profitable for any coalition.

How is excess calculated? Let us take coalition (2,3) as an example. If it deviates, then the total amount
allocatable to it will be $600/w minus $538/w (claim of the remaining coalition (1)) giving $62/w to allo-
cate. What could this coalition buy with the allocated funds? The best option is an m4.large ($18/w) and an
m4.xlarge ($37/w) with a total award of $55/w. Thus, the excess is its award of $582/w minus $55/w, result-
ing in $527/w.

Thus, monotonicity is not maintained, as the award for coalition (2) is less than the award of coali-
tion (1), so additional conditions must be added.

Table 3. Maximum award solution

Coalition Award, $/w Instance(s) Excess, $/w
(1) 34 [m5.xlarge] 34
(2) 18 [m4.large] 18
(3) 548 [m5.16xlarge] 548

(1, 2) 52 [m5.xlarge, m4.large] 52
(1, 3) 582 [m5.xlarge, m5.16xlarge] 527
(2, 3) 566 [m4.large, m5.16xlarge] 255

(1, 2, 3) 600 [m5.xlarge, m4.large, m5.16xlarge]

Constraint Equal Award Rule

One common approach is to distribute available resources proportionally to the estate, divided equally
among all teams (without exceeding their claims). An example of the rule’s application is given in Table 4.

Table 4. Constraint equal award rule allocation

Coalition Award, $/w Instance(s) Excess, $/w
(1) 148 [m4.4xlarge] 148
(2) 148 [m4.4xlarge] 148
(3) 148 [m4.4xlarge] 148

(1, 2) 296 [m4.4xlarge, m4.4xlarge] 296
(1, 3) 296 [m4.4xlarge, m4.4xlarge] 241
(2, 3) 296 [m4.4xlarge, m4.4xlarge] -15

(1, 2, 3) 444 [m4.4xlarge, m4.4xlarge, m4.4xlarge]

As seen in Table 4, the excess of coalition (2,3) is negative. How is it possible? Suppose that coalition
deviates from the grand coalition. The claim of the remaining coalition (1) is $274/w. It can be fully granted,
as the m5.8xlarge instance price is exactly $274/w. The remaining budget is $600 - $274 = $326/w. We can
allocate the total budget by allocating an m5.8xlarge ($274/w) to Team 2 and an m4.xlarge ($37/w) to
Team 3. This means that coalition (2,3) will receive $311/w, which is higher than the allocated $296/w,
making deviation from the grand coalition beneficial. Thus, the equal award is not a stable solution, as for
some of the product team coalitions, deviation is more beneficial.

28 e-ISNN: 2617-7323. Наукові записки НаУКМА. Комп’ютерні науки. 2024. Том 7

Proportional Rule

Many authors [2] consider the proportional rule a reasonably fair allocation method. In this approach,
each player receives a share of the estate proportional to its weight. An example of the rule is given in
Table 5. Obviously, for product team (3), this approach is much better than the previous one. Please note,
that for the coalition of teams (2,3) it is more profitable to deviate as excess is negative. Even so, competing
coalition (1) receives less, making this solution appear to be more stable.

Table 5. Proportional rule

Coalition Award, $/w Instance(s) Excess, $/w
(1) 74 [m4.2xlarge] 74
(2) 148 [m4.4xlarge] 148
(3) 148 [m4.4xlarge] 148

(1, 2) 222 [m4.2xlarge, m4.4xlarge] 222
(1, 3) 222 [m4.2xlarge, m4.4xlarge] 167
(2, 3) 296 [m4.4xlarge, m4.4xlarge] -15

(1, 2, 3) 370 [m4.2xlarge, m4.4xlarge, m4.4xlarge]

Nucleolus for Computing Cloud Resource Allocation

The nucleolus is a solution concept in cooperative game theory that maximizes stability by minimizing
coalitions’ incentives to deviate [5].

The objective is to find an imputation whose excesses vector is maximized in leximin order within the
available range of choices per player.

Table 6 shows that the nucleolus solution provides both the best excess and deficit values for the worst
coalitions, making it the most stable choice.

Table 6. Nucleolus

Coalition Award, $/w Instance(s) Excess, $/w
(1) 148 [m4.4xlarge] 148
(2) 148 [m4.4xlarge] 148
(3) 274 [m5.8xlarge] 274

(1, 2) 296 [m4.4xlarge, m4.4xlarge] 296
(1, 3) 422 [m4.4xlarge, m5.8xlarge] 367
(2, 3) 422 [m4.4xlarge, m5.8xlarge] 111

(1, 2, 3) 570 [m4.4xlarge, m4.4xlarge, m5.8xlarge] 570

Thus, the nucleolus should be determined within a limited choice space, after which FinOps can cali-
brate resource allocation based on each product team’s main computing characteristics.

The suggested approach is as follows:
1. Define claims (instance price) and budget in game theory terms.
2. Find a solution that maximizes the smallest excess of a coalition (nucleolus) in relation to available

cloud resources.
3. For each product team select an instance with a price lower than the allocated profit based on the product

team’s desired criteria.
The suggested approach is presented as a BPMN model in Figure 1.
Found nucleolus per each estate and possible instance types taken from Table 1 are shown in Table 7.

One may notice that claim boundaries, monotonicity, resource monotonicity, and cloud constraints are
maintained in the given examples.

Table 7. Nucleolus-based solutions for different estates

Estate, $/w
Awards, $/w

Product team 1 Product team 2 Product team 3
222 74 74 74
370 74 148 148
570 148 148 274
758 148 274 336

B. Artiushenko A nucleolus-based approach for cloud resource allocation 29

Estate, $/w
Awards, $/w

Product team 1 Product team 2 Product team 3
1107 148 411 548
1586 274 538 774

Based on the identified nucleolus-based solution, appropriate instances can be assigned (see Table 8).

Figure 1. Suggested approach

Table 8. Allocated instances

Estate, $/w Product team 1 Product team 2 Product team 3
222 m4.2xlarge m4.2xlarge m4.2xlarge
370 m4.2xlarge m4.4xlarge m4.4xlarge
570 m4.4xlarge m4.4xlarge m5.8xlarge
758 m4.4xlarge m5.8xlarge m4.10xlarge
1107 m4.4xlarge m5.12xlarge m5.16xlarge
1586 m5.8xlarge m4.16xlarge m5.24xlarge

Thus, the m4.4xlarge has lower EBS than the m5.4xlarge, and product team 2’s priority is EBS. The
same applies to product team 3: CPU is their highest priority. Based on these requirements, some product
teams may be offered an alternative solution (see Table 9), as their main characteristic requirements some-
times prove to be more flexible at later stages.

Table 9. Allocated instances based on total budgets and usage

Estate, $/w Product team 1 Product team 2 Product team 3
222 m4.2xlarge m4.2xlarge m5.2xlarge
370 m4.2xlarge m4.4xlarge m4.4xlarge
570 m4.4xlarge m4.4xlarge m5.8xlarge
758 m4.4xlarge m5.2xlarge m5.8xlarge
1107 m4.4xlarge m5.12xlarge m5.16xlarge
1586 m5.8xlarge m4.16xlarge m5.24xlarge

Conclusions

A game-theoretic approach to allocating cloud-based computing resources has been presented. In the
computational service (or resource) market, each service incurs a cost based on the amount of resources
used. Specifically, the allocation of cloud computing instances among product teams is examined. As each
resource is allocated to a specific team and teams can cooperate with one another, the task can be considered
a cooperative game.

A nucleolus-based approach is suggested to solve the cloud resource allocation problem. First, a nucleo-
lus is determined based on the available cloud resource options, and then the solution is adjusted based on
the product teams’ objectives. Using the nucleolus maximizes the stability of resource allocation by mini-
mizing the incentives of product team coalitions to deviate.

30 e-ISNN: 2617-7323. Наукові записки НаУКМА. Комп’ютерні науки. 2024. Том 7

Список літератури
1. A game-theoretic method of fair resource allocation for cloud computing services / G. Wei et al. // The journal of supercomputing. —

2010. — Vol. 54. — Pp. 252–269. — https://doi.org/10.1007/s11227-009-0318-1.
2. Bei X. Fair and efficient multi-resource allocation for cloud computing / X. Bei, Z. Li, J. Luo // Web and internet economics 18th

international conference. — Troy, NY, 2022. — Pp. 169–186.
3. Deochake S. Cloud cost optimization: a comprehensive review of strategies and case studies / S. Deochake. — 2023. — 36 p. (Pre-

print). — https://doi.org/10.48550/arXiv.2307.12479.
4. Dominant resource fairness: fair allocation of multiple resource types [Electronic resource] / A. Ghodsi et al. // 8th USENIX symposium

on networked systems design and implementation. — Boston, MA, 2011. — Mode of access: https://www.usenix.org/conference/nsdi11/
dominant-resource-fairness-fair-allocation-multiple-resource-types. — Title from screen.

5. Schmeidler D. The nucleolus of a characteristic function game / D.Schmeidler // SIAM journal on applied mathematics. — 1969. —
Vol. 17, no. 6. — Pp. 1163–1170. — https://doi.org/10.1137/0117107.

6. What is FinOps? [Electronic resource] // FinOps Foundation. — Mode of access: https://www.finops.org/framework/ (date of access:
28.12.2024). — Title from screen.

References
Bei, X., Li, Z., & Luo, J. (2022). Fair and efficient multi-resource allocation for cloud computing. Web and internet economics 18th interna-

tional conference (pp. 169–186). Springer.
Deochake, S. (2023). Cloud cost optimization: a comprehensive review of strategies and case studies. https://doi.org/10.48550/

arXiv.2307.12479.
Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., & Stoica, I. (2011). Dominant resource fairness: fair allocation of multiple

resource types. У 8th USENIX symposium on networked systems design and implementation. USENIX Association. https://www.usenix.
org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types.

Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM journal on applied mathematics, 17 (6), 1163–1170. https://
doi.org/10.1137/0117107.

Wei, G., Vasilakos, A. V., Zheng, Y., & Xiong, N. (2010). A game-theoretic method of fair resource allocation for cloud computing services.
The journal of supercomputing, 54, 252–269. https://doi.org/10.1007/s11227-009-0318-1.

What is FinOps? FinOps Foundation. https://www.finops.org/framework/.

Артюшенко Б. А.

РОЗПОДІЛ ХМАРНИХ РЕСУРСІВ НА БАЗІ НУКЛЕОЛУСА

Хмарні обчислення змінили процес менеджменту інфраструктури та ввели нові виклики, зокре-
ма керування витратами на хмару. В роботі розглянуто розподіл хмарних ресурсів із метою опти-
мізації витрат. Показано, що розподіл хмарних ресурсів можливо розглядати як приклад коопера-
тивної гри. Запропоновано підхід на базі нуклеолуса для розв’язання задачі максимізації найгіршого
ексцесу коаліції при розподілі хмарних ресурсів. Розглянуто й досліджено приклади наближені до
реальних із порівнянням з поширеними підходами.

Ключові слова: хмарні технології, розподіл ресурсів, кооперативна гра, нуклеолус.

Матеріал надійшов 14.03.2024

Creative Commons Attribution 4.0 International License (CC BY 4.0)

https://doi.org/10.1007/s11227-009-0318-1
https://doi.org/10.48550/arXiv.2307.12479
https://kafka.apache.org/documentation/
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://doi.org/10.1137/0117107
https://www.finops.org/framework/
https://doi.org/10.48550/arXiv.2307.12479
https://doi.org/10.48550/arXiv.2307.12479
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://doi.org/10.1137/0117107
https://doi.org/10.1137/0117107
https://doi.org/10.1007/s11227-009-0318-1
https://www.finops.org/framework/

	_Hlk192754639
	_Hlk182815600
	_Hlk184295011

