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MORPHONAS-BENCH: A BENCHMARK SUITE FOR
MORPHOGENETIC NEURAL NETWORK GENERATION

We present MorphoNAS-Bench, a benchmark and toolkit for neural architecture search (NAS) using
a generative, developmentally inspired design space. Unlike current NAS benchmark datasets
(NAS-Bench-101, NATS-Bench) that use static graph encodings of networks, in MorphoNAS-Bench net-
works are simple, compact genomes that drive morphogenetic development, allowing for a variety of richly
defined, spatially embedded recurrent architectures that emerge through different forms of deterministic
growth. The following local developmental rules are used in MorphoNAS to grow genomes: morphogen
diffusion, cell division, differentiation, and axon guidance as key mechanisms. The seed benchmark dataset
presented in this work consists of 1,000 genome-architecture pairs, taken from a pool of over 50,000 gen-
eration attempts using the following quality thresholds: a minimum 5 neurons, 3 edges, and 70% out-degree
coverage. The dataset was constructed using Latin Hypercube Sampling (LHS) with orthogonal array de-
sign to ensure comprehensive parameter space coverage. The attempts were conducted using both fully
stratified parameter sampling and a biologically inspired Genome.random() sampling method, ensuring a
reasonable level of coverage of the search space while being plausible. Each sample includes detailed an-
notations of graph entropy, hierarchy scores, core-periphery structure, transitivity, reciprocity, and struc-
tural balance metrics. We share an analysis of the emergent properties like size, modularity, grouping, and
efficiency, demonstrating that both generation strategies can produce structured networks that are rich in
their nontriviality. The provided Python toolkit provides the means of investigation to test how genomes
develop into neural networks, with associated structural analysis, framing MorphoNAS-Bench as a repro-
ducible and biologically inspired testbed for any research studies exploring architecture diversity, evolu-
tion, and emergent structure in NAS.

Keywords: neural networks, developmental encoding, morphogenetic development, neural architecture
search, benchmark toolkit, emergent modularity, indirect encoding.

1. Introduction

Neural Architecture Search (NAS) attempts to automate the design of neural networks. Typically, NAS
has searched a fixed set of architectures that are normally explicitly encoded as graphs or modules. Bench-
marks like NAS-Bench-101 and NATS-Bench have been critical for reproducible research, but still use a
top-down framework that constrains variability and is completely different from the biological processes
generating real neural systems.

MorphoNAS-Bench is a benchmark that addresses this gap by being grounded in a generative search
space. MorphoNAS-Bench does not directly encode networks, but instead encodes a compact genome for
networks that develop into a neural architecture through simulated morphogenetic development, inspired by
biological embryogenesis. Each morphogenetic genome specifies local morphogen diffusion, cell division,
differentiation, and axon guidance, and as a result a diverse population of spatially embedded, recurrent
neural networks arise through deterministic simulation.
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This paper will present MorphoNAS-Bench as a dataset and toolkit, including a stratified sample of
1,000 seed architecture genomes generated for several significant developmental parameters, including
fully stratified sampling and a biologically plausible Genome.random() method. Each network genome
generates a spatially embedded neural network with recorded metrics based on node number, degree distri-
butions, clustering, and spatial organization. Also, we include Python scripts and utility programs for the
creation, development, and evaluation of genome neural networks.

Our project fosters reproducible experimentation with developmental NAS methods by introducing ad-
ditional populations of neural architecture designs that are biologically grounded for additional algorithmic
exploration. MorphoNAS-Bench can provide the context to evaluate emergent properties of the resulting
networks, as well as design NAS algorithms for a space where architectures can develop, as opposed to the
creation of neural networks using a space defined by a human designer.

We built the benchmark on the theoretical framework we described in more detail previously in [6]. It
outlined the theoretical intent and generative approach based on morphogenetic growth, inspired by the Free
Energy Principle. While that paper primarily deals with the foundational aspects of MorphoNAS-Bench,
this work provides a benchmark to investigate structural diversity and architecture design potential of ge-
nomically grown networks.

2. Related Work
2.1. Neural Architecture Search and Benchmarks

Neural Architecture Search (NAS) has become an important framework for automating the design of
neural networks by exploring large search spaces using optimization techniques such as reinforcement
learning, evolutionary strategies, and differentiable approaches. One notable advance has been the manual
development of the NAS benchmarks that facilitate reproducible and fair comparisons among algorithms.

NAS-Bench-101 [15] was the first detailed tabular benchmark which consists of over 423,000 cell-
based architectures and is evaluated on CIFAR-10. Each architecture was trained using a standardized
protocol, with a record of performance metric values in a lookup table that allowed comparative perfor-
mance checks with little latency. Following that study, NAS-Bench-201 [4] developed a smaller and more
controlled search space and observed the performance across CIFAR-10, CIFAR-100, and ImageNet-16.
This expanded and allowed for generalization analysis and also provided an increase in analytical efficiency
for testing NAS methods.

NATS-Bench [3] added on to the paradigm by also considering macro and micro architectures, and al-
lowing training-free evaluations and weight-sharing methods. These benchmarks have allowed for a shift in
the community towards more rigorous, transparent, and standardized evaluation of NAS architectures.

Other approaches have pioneered the use of differentiable NAS, such as DARTS [8], where architecture
weights are optimized with model parameters, providing a fast one-shot training method. While these ap-
proaches represent advances, they typically only consider very constrained, manually encoded architecture
spaces.

One common attribute in current NAS benchmark studies is that they all rely on explicitly encoded
architectures as directed acyclic graphs (DAGs) or operation lists. As such, the graphs are generic, static,
and result in non-generative architecture spaces, which limit researchers’ exploration of open-ended or bio-
logically inspired architecture spaces.

2.2. Developmental and Generative Approaches to Architecture Design

There is increasing interest in the composition of developmental and indirectly encoded neural sys-
tems outside of the classical NAS paradigm, where the architecture arises from a compact generative set of
rules rather than a directly specified list of components.

There are experimental examples of this emerging approach beginning with NEAT [13], in which both
topologies and weights are evolved from direct mutations and crossover of graph-type structures, and Hy-
perNEAT [12], which used Compositional Pattern Producing Networks (CPPNs) to indirectly encode
relationships between elements in a connectivity pattern based on geometric distances. This approach dem-
onstrated the potential of indirect encodings in terms of potentially producing binary representations for
traditional regular scalable networks.
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Generative systems have started emerging only recently, in areas such as neural tissue simulation [10],
modular robot morphogenesis [14], and procedural graph generation [2].

Most of such frameworks still remain largely domain specific, and there does not yet exist a more gen-
eralized evaluation platform that permits systematic algorithmic comparisons across tasks and domains.
There are some benchmarks (e.g. PCG Benchmark [7], Evolution Gym [1]) that give a little bit of structure
within a single domain, but there is still no broadly applicable platform that allows for head-to-head evalu-
ation of generative algorithms across datasets that include neural simulation, robot morphology, and graph-
based generation tasks [5].

2.3. Positioning of MorphoNAS-Bench

MorphoNAS-Bench is a step forward with a benchmark for neural architectures designed by develop-
mentally generating them. It combines a genome encoding inspired by biology that defines morphogen
dynamics and axonal growth, a deterministic simulator that generates spatially embedded recurrent graphs,
and a curated database of valid genomes and their structural metadata. Unlike previous NAS benchmarks
[3, 4, 15], MorphoNAS-Bench provides a model for a generative architecture space where topology and
function emerge through simple local interaction rules and can be employed to explore evolvability/com-
pactness/biological realism, which none of the existing tabular datasets can do. MorphoNAS-Bench can
contribute to the neuroevolution, NAS, and developmental computation communities by providing a vehicle
for looking at architectures that grow organically, as opposed to just by refinement. It is an additional, open-
ended avenue for architecture search.

3. MorphoNAS-Bench Overview
This section provides descriptions of the components of the MorphoNAS-Bench search space, the op-
erational genome encoding format, and the resulting networks’ properties.

3.1. Genome Encoding

The genome representation in MorphoNAS-Bench defines morphogen diffusion, cell fate thresholds,
and axon guidance rules that drive network development. Broadly, these mechanisms follow the generative
model in a separate theoretical paper [6]. The specification of the genome structure, parameter definitions,
and configuration options are available on the MorphoNAS-Bench GitHub repository https://github.com/
sergemedvid/MorphoNAS-Bench.

3.2. Morphogenetic Development Process

The network growth is implemented using a deterministic simulation of developmental dynamics based
on the genome encoding provided above. A detailed structure and model of these dynamics, including bio-
logical motivation, is provided in the supplementary theoretical paper [6].

3.3. Comparison with Traditional NAS Spaces

MorphoNAS-Bench introduces a complementary design space for NAS, which enables research of the
evolutionary and generative methods that are often incompatible with standard benchmarks.

Table 1. Comparison of MorphoNAS-Bench with traditional NAS spaces

Property MorphoNAS-Bench Traditional NAS Benchmarks
Encoding Type Indirect (genome — process) Direct (graph / op list)
Topology Generation Emergent via simulation Static, predefined graph space
Network Size Variable Fixed or bounded
Biological Plausibility High Low
Interpretability High (local rules — global form) Medium
Reproducibility Deterministic Deterministic
Search Space Diversity Very high Limited by architecture schema
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4. Benchmark Dataset and Evaluation Tasks

MorphoNAS-Bench includes a curated, developmentally-grounded benchmark dataset designed to char-
acterize and uncover the search space of architectures generated from within the MorphoNAS framework.
The benchmark is simply a starting point for search, discovery, and exploration of diversity within a biolog-
ically-inspired generative space, rather than for comparison of fitness value against predefined graph targets.
This section describes the dataset construction, evaluation tasks, and supporting metrics to study emergent
neural architectures.

4.1. Dataset Construction

The construction of the MorphoNAS-Bench dataset was accomplished via large numbers of simulated
genomes, using stratified sampling [11], as well as filtering and post hoc analysis after simulated growth was
complete. All genomes simulated through the morphogenetic growth process, generate a directed, weighted
recurrent neural network, and, with it the structural and functional properties can then be analyzed.

4.2. Genome Generation

Genome sampling involved a combination of Latin Hypercube Sampling (LHS) methodology [9] and
orthogonal array design to maximize coverage and statistical quality of core parameters. Two sampling
strategies were used. The first was a fully stratified sampling of all queried parameter ranges, and the sec-
ond, a biologically-informed Genome.random(), are available at GitHub https://github.com/sergemedvid/
MorphoNAS-Bench. The stratified sampling maximizes space coverage by sampling parameters indepen-
dently of each other, which could allow for some impossible combinations, while the biologically-informed
sampling also stratifies core traits, while the additional fields are filled using domain-informed constraints
(i.e., normalized diffusion and inhibition matrices, morphogen probabilities) to ensure biologically plausible
combinations. Each Genome JSON is fully traceable in the generation metadata.json file, where all param-
eters, random seed, CLI flags, and code version used to generate that genome are recorded.

4.3. In-Loop Quality Filtering

Real-time filtering occurs after the growth process is finished: only networks with a minimum of five neurons,
at least three edges, and no less than 70% of neurons with an outgoing connection, are included in the dataset. We
have additional thresholds on weak edge connectivity and density to eliminate trivial and degenerate topologies
to ensure only structurally meaningful architectures enter the dataset. The pipeline will also keep track of the
successful and failed generations to corroborate further analysis of the generative space within the framework.

By default, we use LHS over the parameter space with random morphogen-to-rule mappings (i.e., Ge-
nome.random()) set, while if the --no-genome-random flag is used, the mappings become deterministic with
sampling from the rule table.

5. Toolkit and Implementation Resources

The MorphoNAS-Bench toolkit and resources, including genome generation scripts, morphogenetic
development engine, visualization tools, and evaluation pipelines, is openly accessible at https://github.
com/sergemedvid/MorphoNAS-Bench. Within the MorphoNAS-Bench codebase, the README contains
important documentation, configuration examples, and Jupyter-compatible workflows for reproducing re-
sults and expanding the benchmark suite. We encourage users to explore the README and API documen-
tation if they would like to integrate the MorphoNAS-Bench codebase into their own NAS pipelines or
other developmental modeling experiments.

6. Baseline Results and Use Cases

To explore the structure, diversity, and functional viability of MorphoNAS-Bench, we completed base-
line evaluations. This section outlines examples that highlight the diversity of the generative space and
demonstrates the structural expressiveness of the underlying model, as well as provides summary use cases
for researchers that work in the area of neural architecture search (NAS) and/or generative graph modeling.
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6.1. Generation Metadata and Sample Efficiency

While both generation methods used the same post-growth filtering, requiring at least five neurons, weak
connectivity, and 70% out-degree coverage, there are significant differences in sample efficiency for the two
generation strategies. In the fully stratified method, for the generation of 1000 filtered genomes, there were
46822 rejected based on insufficient node count and 2610 rejected based on disconnectedness. In the Ge-
nome.random() method, for the generation of 1000 filtered genomes, there were 23817 rejected based on
insufficient node count and another 2626 rejected based on disconnectedness. This indicates that the Ge-
nome.random() method resulted in a higher yield of valid architectures, and generated overall fewer ge-
nomes to arrive at each individual valid architecture.

This comparison shows the benefits of biologically inspired genome construction; it preserves diversity
and expressiveness in the search space while being able to generate functionally plausible and structurally
correct networks more quickly. The results, in the end, confirm both the generative richness of MorphoNAS,
and the need for filtering to arrive at viable meaningful neural architectures.

6.2. Structural Metrics and Emergent Patterns

We conducted an extensive structural characterization of 1000 networks sampled from the benchmark.
The structural analysis shows the emergence of a range of topological properties and is shown in Figures 1
and 2 (advanced network metrics analyses).

Figure 1. Advanced network metrics analysis for networks generated with Genome.random()

Both generation strategies produce networks that range in size and types of topology, although subtle
structural distributional differences are indicated in Table 1.

Table 2. Comparison of advanced network metrics for Genome.random()
and fully stratified sampling (1,000 Samples)

Metric / Pattern Genome.random (biologically plausible) Fully Stratified
Graph Entropy More peaked, shifted higher (more complex) | Broader, more low-entropy outliers
Modularity (vs. Size) Higher modularity, esp. at large sizes More moderate modularity at large size
Hierarchy Score More high-hierarchy outliers, esp. large Mostly low-moderate, fewer outliers
Core-Periphery Score More uniformly low-moderate Pronounced secondary mid-range peak
Communities (vs. Size) Tighter, higher at large sizes More spread, fewer at large sizes
Transitivity vs. Clustering More high-transitivity outliers Tighter, lower overall
Reciprocity Distribution Narrower, centered at mid-range Broader, more low/high outliers
Structural Balance (vs. Size) | Mostly low, very few outliers More outliers at small sizes
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Figure 2. Advanced network metrics analysis for networks generated with the fully stratified method

6.3. Parameter Influence and Developmental Constraints

In order to understand how genome parameters influence the final architectures, we correlated the
genome settings with network-level outcomes. Figures 3 and 4 (genome parameters vs. network properties)
depict these relationships.

Figure 3. Genome parameters vs. network properties for genomes generated with Genome.random() method

Both generation strategies offer a broad exploration of how genome parameters shape network properties,
although subtle differences in their variability and outlier behavior distinguish the two distinct methods, and
are summarized further in Table 2.
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Figure 4. Genome parameters vs. network properties for genomes generated with the fully stratified method

Table 3. Comparison of genome parameter effects on network properties
for Genome.random() and fully stratified sampling (1,000 samples)

Metric /
Relationship

Genome.random (biologically plausible)

Fully Stratified

Morphogens vs.
Network Size

Broad spread of network sizes at each morphogen
count; more vertical variability across range

Similar broad spread, with slightly more high-
size outliers at some counts

Grid Size vs.
Network Size

Strong positive correlation, some dispersion; a
few outlier networks above/below main diagonal

Very tight correlation, minimal dispersion;
nearly all networks tightly follow grid area

Growth Steps vs.

Little direct correlation; wide vertical spread at all

Same: step count does not predict size, wide

vs. Network Size

threshold

Network Size values spread across the range

Diffusion Rate vs. | Mostly low clustering; a few higher outliers up to | Mostly low clustering, but a few very high

Clustering 0.6 outliers (up to 0.8); wider spread at low
diffusion rates

Division Threshold | No strong trend; wide range of sizes at each No trend, but slightly broader vertical spread in

network sizes at all thresholds

Axon Growth
Threshold vs.
Density

Density concentrated at low values, with a few
moderate outliers; no strong relationship

Also concentrated at low density, but outliers
reach higher density (up to ~0.5), especially at
lower thresholds

Both methods provide a broad exploration of the parameter-to-architecture mapping of networks, al-
though the fully stratified sampling indicates even more extreme outliers for clustering and density when
compared to Genome.random, which produces a marginally more regular and reasonable distribution.
Network size tended to dominate any reasonable number of genome parameters that modulated a range of
structural properties, with considerable variability indicating the richness and complexity of the proposed
generative developmental process.

6.4. Benchmark-Wide Structural Profiles

Figures 5 and 6 (network structural analysis) summarize general distributional properties across the
1,000-network benchmark.
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Figure 5. Network structural analysis results for genomes generated with Genome.random() method

Figure 6. Network structural analysis results for genomes generated with the fully stratified method

In practical terms, the Genome.random method presents optimal NAS research for applicable con-
ditions, as the search space is diverse and populated with functional, meaningful architectures requiring
little filtering or alteration following generation.
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In contrast, those wishing to assess structural diversity without bounds, or to benchmark NAS algo-
rithms under the most extreme and unpredictable conditions, would likely benefit from completely strati-
fied sampling since this allows exposure through the search process to a range of network topologies that
included even the edge cases. For the purposes of establishing a recommendation, we suggest the Genome.
random method as the primary approach for experimental evaluation, and use fully stratified sampling as a
supplementary technique for assessing diversity and conducting ablation analyses.

6.5. Summary

This section has indicated that MorphoNAS-Bench is structurally rich, viable for assessing NAS search
space, quantitatively diverse across genome and network features, and maintains transparent filtering and
reproducibility. By bringing together developmental encoding, statistical sampling, and structural annota-
tion, MorphoNAS-Bench provides a generative, biologically-based search space that can be investigated,
analyzed, and benchmarked, filling an identifiable knowledge gap in NAS research.

7. Conclusion and Future Work

MorphoNAS-Bench presents a new methodology for neural architecture search benchmarks. In this re-
gard, we have transitioned from static graph encodings to networks that are developed and shaped through
a biologically inspired growth process. This enables us to produce a tight, generative, reproducible search
space that is rich in structural and functional variation. Through careful parameter sampling, quality filter-
ing, and analysis, we have shown that our benchmark samples form a larger, controllable architecture space,
with sampled networks that are structurally complex and functionally able. We discovered that basic NAS
and evolutionary algorithms are able to explore the architecture space without difficulties, establishing its
accessibility, yet also its challenging nature. Our methodology differs from previous benchmarks, by not
restricting the search space format to a set of cells or sequences of operations. The design of MorphoNAS-
Bench opens a pathway for researchers to examine, among others, indirect encodings, morphogenetic pro-
cesses, developmental constraints, evolvability, modularity, and variation in a biologically plausible man-
ner, as well as apply metrics for evaluating search strategies on the basis of performance, coverage, struc-
tural novelty, and generative robustness.

Future Work

Future work is possible towards several promising opportunities to extend MorphoNAS-Bench. Ex-
tending functional tasks will be accomplished by adding new, reiterative reinforcement learning environ-
ments, supervised learning challenges, and evaluations of transfer or multi-task generalization. Integrating
a search strategy is about developing benchmarks and competitions for differentiable, gradient-free and/or
meta-learning NAS methods, with baseline comparisons of sample efficiency, diversity, and convergence.
Genotype-phenotype mapping may involve studies related to redundancy, robustness, locality, and the
neutral networks and mutational neighborhoods structure. We plan to expand the benchmark to become
increasingly large with tiered datasets consisting of over 100,000 genomes, creating intentional parameters
that allow only configurations for low-resource, diversity-based, or task-based evaluations. Finally, there is
a rich opportunity for additional tooling and visualization within the structure of MorphoNAS-Bench; for
example, bringing web-based viewers (that showcase a demographic of developmental simulations and
network exploration) and surrogate predictors trained from the neural architecture benchmark data to sup-
port the genome-based NAS.
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Meosiow C. O.

MORPHONAS-BENCH: BEHUMAPK
JJIA MOP®OTEHETUYHOI TEHEPAIIII HEUPOHHUX MEPE X

Y pobomi npeocmasneno MorphoNAS-Bench — Oenumapk i Habip iHcmpymenmie 01a NOwyKy Heti-
pounux apximexmyp (Neural Architecture Search, NAS), saixuii ocHo8aHUll HA 2eHePAMUBHOMY, PO3BUMKO-
60-HamxHeHomy npocmopi nowyxky. Ha eiominy 6i0 cyyacnux NAS-6enumapkis, sAKi 6UKOPUCMOBYIOMb
cmamuyni  KoOy8amHs  epagis, w0 npeocmaenawms  HeupoHui  mepexci, MorphoNAS-Bench
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Xapaxkmepu3yemvb s KOMRAKMHUMU 2eHomamu. Lfi 2cenomu konmponioioms npoyec Mopgho2eHemuyHo20 po3-
BUMKY, U0 003605€ CMBOPIOSAMU PI3HI RPOCMOPOGI PeKYPEeHMHI apXimeKmypu, SKi BUHUKAIOMb 6HACTIOO0K
PI3HUX TMuni@¢ 0emepmiHO8aAHO20 3POCHAHHS, SKI NPU YbOMY BUSHAYAIOMbCS JOKAALHUMU NPAGUIAMU
PO3BUMKY.

Touamxosuii nabip oanux Genumapxy micmums 1000 nap «eenom-apximexmypay, sKki 6yau obpami 3
oinvw Hioie 50 000 cnpob cenepayii. Lleil nabip 66 cmeoperuli WIsIXOM BUKOPUCHANHSL SIK NOGHICMIO CIMpa-
muixosarnozo 6i0bopy napamempis, max i 3a 6ionociuHo-namxnenHum memooom Genome.random(). 3a-
Ccmocyeants 8UNAOK08020 Nioxody 3ade3neuye adekeanne OXONJIeHHs NIOWI NOWYKY Md PearicmuyHicmy
pesynomamie. Koowcne 3naiioene piwenna micmumos 0emanbHy aHOMayilo CMpYKMypHUX noxkasHukie. Mu
NPOBOOUMO AHANI3 MAKUX CIMPYKMYPHUX XAPAKMEPUCIUK, K POZMID, MOOYIIbHICMb, 2PYNY8AlHs MA eqdhex-
muenicms. Mu noxasyemo, wo 0o6udsi cmpameeii 2eHepayii 30amui ymeoprosamu ik CmpyKmypoeami, max
I HeMPUBIANbHI MEPEICI.

Haoanuii incmpymenmapiii na Python 0o36o15¢ uguamu npoyecu po3gumiy 2eHOMi6 HelpOHHUX MePedC
pazom i3 8i0nogionum cmpykmypHum ananizom. Taxum yunom, MorphoNAS-Bench sucmynac sik nosmopio-
sana i OION02IUHO 0OIPYHMOBAHA NAAMPOPMA O OOCTIONCEHD PIZHOMAHIMHOCI, €8ONIOYIOHYBAHHS, MA
emepodcenmui cmpykmypu 01a NAS.

KurouoBi ciioBa: HelipoHHI Mepesxi, pPO3BUTKOBE KOAYBaHHS, MOP(OTeHETHYHHUI PO3BUTOK, HOIIYK HEeH-
POHHHUX apXiTEKTyp, OeHIMapK-iHCTpyMEHTAapii, eMep)KeHTHA MOIYIbHICTh, HETIPSIME KOTyBaHHS.

Mamepian nadiiiwos 21.07.2025
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