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MODERN APPROACHES TO CONTROLLABLE EMOTIONAL 
SPEECH SYNTHESIS

The generation of emotionally expressive and controllable speech is one of the most dynamic and techni-
cally demanding areas in the intersection of artificial intelligence, natural language processing, and speech 
synthesis. Recent progress in emotional text-to-speech (TTS) systems has enabled increasingly natural and 
emotionally nuanced voice generation, shifting from early concatenative methods to advanced neural mod-
els. This review provides a structured overview of the state of the art in controllable emotional TTS, high-
lighting key architectural paradigms. A special focus is placed on emotional control mechanisms, including 
discrete emotional tagging with categorical or dimensional labels, reference-based control which condi-
tions synthesis on prosodic or stylistic exemplars, and prompt-based techniques that leverage the capabili-
ties of large language models for flexible and intuitive emotional specification.

Despite substantial improvements in synthesis quality and emotional expressiveness, several critical 
challenges remain unresolved. These include the disentanglement of emotional, speaker, and prosodic fea-
tures, the lack of standardized evaluation metrics for emotional clarity and naturalness, and the significant 
computational demands associated with training high-fidelity models. Furthermore, the scarcity of diverse 
and emotion-labeled speech data, especially for low-resource and morphologically rich languages, contin-
ues to limit the generalizability of current approaches. This review not only summarizes existing methods 
and their trade-offs but also outlines promising research directions, aiming to support the development of 
more robust, efficient, and emotionally expressive speech generation systems.

Keywords: deep learning, text-to-speech synthesis, natural language processing, speech emotion con-
trol, diffusion models.

Introduction

One of the most difficult but important tasks in developing natural language processing and artificial 
intelligence is generating speech with predefined characteristics and style. Generating natural, emotionally 
expressive speech has long been a central goal in artificial intelligence and natural language processing. 
Achieving this requires synthesizing speech that sounds humanlike and conveys emotional nuances, bridg-
ing the gap between human communication and machine-generated speech. Such advancements hold im-
mense promise for applications ranging from assistive technologies and virtual assistants to entertainment 
and education. However, achieving this level of sophistication remains a formidable challenge, particularly 
in low-resource language contexts where labeled emotional datasets are limited.

Traditional text-to-speech (TTS) systems relied mainly on deterministic algorithms that frequently failed 
to produce dynamic, natural-sounding speech. Recent advances in deep learning have transformed TTS by 
allowing models to capture complex prosodic and emotive variations. While several systems have aimed to 
improve naturalness, few have investigated the explicit regulation of emotional expression in synthesized 
speech [34]. This feature is crucial for developing more engaging and context-appropriate human–com-
puter interactions.

There are a number of basic obstacles that affect the capacity to produce emotionally expressive dis-
course. These include gathering enough emotion-labeled training data, effectively simulating the intricate 
link between text content and emotional expression, and providing intuitive controls for the emotional as-
pects of synthesized speech [5, 34]. These issues have been largely addressed by recent developments using 
innovative designs and training techniques.

This review examines the current state of emotional speech synthesis, focusing on recent advances in 
controllable and expressive TTS systems. We analyze the emotion control approaches that represent an 
important innovation in this domain. By examining its technical foundations, methodological approaches, 
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and evaluation results, we aim to provide a comprehensive overview of the current state of the art in emo-
tional speech synthesis and identify promising directions for future research.

Text-to-Speech Synthesis Approaches

Non-Neural Approaches to Speech Synthesis

Text-to-speech conversion has historically progressed through several distinct paradigms. Early systems 
relied on concatenative synthesis, piecing together pre-recorded speech fragments to form complete utter-
ances. While providing natural-sounding elements, these systems struggled with smooth transitions and had 
limited flexibility. The subsequent development of statistical parametric speech synthesis (SPSS), particu-
larly Hidden Markov Model (HMM)-based approaches, offered greater control but often at the cost of natu-
ralness [24]. 

Neural TTS Pipeline

The advent of deep learning has revolutionized TTS technology. Modern neural TTS systems can be 
categorized into several architectural approaches, each with distinct characteristics that affect their overall 
performance and application.

Mu, Yang, and Dong (2021) summarize TTS system construction approaches and methods. They articu-
late a modern speech generation pipeline as an end-to-end system, comprising three parts: a text-analysis 
front end, an acoustic model, and a vocoder [24]. The process begins with the text front end transforming 
the input text into a standardized format. Next, the acoustic model processes this standardized input into 
intermediate acoustic features, incorporating long-term structures from the speech. Common representa-
tions include spectrograms, vocoder features, and linguistic features. Lastly, the vocoder generates the final 
output by adding fine-grained signal details and converting the acoustic features into a time-domain wave-
form. Each system component has its unique architecture, which defines its application (Figure 1). Another 
category of methods follows a fully end-to-end philosophy, in which a single model performs all the neces-
sary processing steps. It directly generates speech audio output from the input data, skipping the creation of 
intermediate features, such as mel-spectrograms, is skipped entirely [34].

Figure 1. Mainstream TTS pipeline

There are a large volume of published studies describing a wide variety of approaches to neural speech 
generation. The systems can be conventionally divided into distinct segments based on the generation tech-
nology employed in a particular system. This review primarily considers architectures that are widely used 
for expressive speech synthesis.
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Controllable TTS Systems Architectures

Autoregressive and Non-Autoregressive Generation Models

Autoregressive generation models have transformed speech synthesis by predicting speech representa-
tions sequentially, with each output based on all previously generated tokens, allowing for the capture of 
intricate temporal relationships inherent in human speech [24]. These models include a variety of acoustic 
architectures, such as transformer-based systems, convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), flow-based models, and diffusion-based approaches, each with unique advantages for 
modeling speech characteristics and improving generation quality [3]. Autoregressive speech synthesis has 
made significant progress in producing genuine, expressive speech that closely resembles human voice 
patterns by learning directly from data rather than relying on substantial manual feature engineering.

Non-autoregressive speech synthesis models address the computational inefficiency of sequential gen-
eration by allowing parallel prediction of acoustic features, which reduces inference time from several 
seconds to real-time or faster production rates [24]. These architectures also encompass a variety of genera-
tive approaches, including feed-forward transformer networks, flow-based models, generative adversarial 
networks, variational autoencoders, and diffusion-based systems, all of which use parallel computation to 
eliminate sequential dependencies inherent in autoregressive methods [34]. While avoiding error propaga-
tion difficulties provides significant speedups and greater stability, non-autoregressive algorithms frequent-
ly require explicit duration prediction or external alignment mechanisms to handle the one-to-many map-
ping challenge between text and speech sequences [15].

Main Neural Architecture Types

Tacotron [33] presented the first acoustic model based on deep learning and remains used in various 
systems. A one-dimensional convolution- and bidirectional gated recurrent unit-based encoder, an attention-
driven decoder, and a Griffin-Lim vocoder are the main parts of the proposed autoregressive architecture, 
which is a sequence-to-sequence (seq2seq) model. It accepts characters as input and generates spectro-
grams, which are subsequently transformed into waveforms by the vocoder. 

Later, Ren et al. presented FastSpeech 2 (2020) [12], an enhanced iteration of the FastSpeech model. It 
extends parallel feed-forward transformer with length prediction to rectify the constraints of its predecessor, 
attaining accelerated training speed and providing control over speech variation information (e.g., pitch, 
energy, and more accurate duration) as conditional inputs with fully end-to-end text-to-waveform synthesis.

Another type of speech synthesizer models the complex speech distribution as a repetitive composition 
of simple distributions, which is called a generative flow (Glow) [24]. Previously, the concept was mainly 
used in vocoders of neural TTS, but now it is also applied to acoustic models [3]. Valle et al. introduced 
Flowtron, an autoregressive text-to-speech synthesis model based on autoregressive flow techniques [13]. 
This novel generative network achieves high-quality mel-spectrograms and enables the manipulation of 
speech variation and style transfer. Moreover, it possesses the capability to control various aspects of speech, 
including pitch, tone, speech rate, cadence, and accent. 

Diffusion neural networks are probabilistic generative models, which operate by learning to reverse a 
gradual noise corruption process. This enables speech generation through iterative denoising of random 
noise conditioned on text input and control parameters [2]. The stochastic nature of diffusion processes al-
lows for diverse synthesis outputs while maintaining stable training dynamics, effectively addressing the 
main issues that have historically challenged other controllable generative approaches in speech synthesis. 
StyleTTS 2 [32] is a non-autoregressive TTS model with differentiable duration modeling, leveraging style 
diffusion and adversarial training with large speech language models (SLMs) to achieve human-level syn-
thesis quality. The system is capable of synthesizing contextually appropriate styles directly from reference 
speech in a zero-shot scenario.

Generative Adversarial Networks (GANs) have become an important technology in controllable TTS 
systems [34]. GANs consist of a generator that synthesizes speech from text and a discriminator that evalu-
ates its realism, trained adversarially to produce high-fidelity outputs. GANs are widely used in vocoders, 
as well as acoustic models for end-to-end systems [3, 24, 34]. Among vocoders, HiFi-GAN [19] is a state-
of-the-art GAN-based approach that achieves both high-fidelity speech synthesis and exceptional computa-
tional efficiency, which implies the diversity of applications in end-to-end speech systems. It employs in-
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novative multi-scale and multi-period discriminators, combined with a generator incorporating multi-recep-
tive field fusion modules, which effectively capture diverse temporal patterns in speech through dilated 
convolutions with different dilation rates and kernel sizes.

Classification of Emotional TTS Models

Emotional Tagging Control

Emotional tagging represents the most straightforward approach to expressiveness control, using ex-
plicit labels or encodings to condition synthesis models. This methodology has evolved from simple one-hot 
encodings to sophisticated multi-dimensional representations.

Older systems allow users to select from a predefined set of discrete emotion labels, such as happy, sad, 
angry, or neutral [5]. The model is usually trained on datasets where speech samples are annotated with 
these labels, such as ESD, RAVDESS, and IEMOCAP, enabling it to generate speech with the correspond-
ing emotional tone. 

The label-based method can be implemented in multiple modes. For instance, MsEmoTTS [23] employs 
a multi-scale emotional speech synthesis framework that can be conditioned with one-hot encoded vectors 
representing discrete emotions such as happiness, anger, sadness, surprise, fear, and disgust. Inoue et al. 
introduce a hierarchical emotion distribution (HED) model for continuous emotion intensity control across 
phonemes, words, and utterances [16]. Practically, the expressiveness is controlled via the vector of emo-
tional intensities from 0 to 1. In contrast, StyleTagging-TTS (ST-TTS) [11] and Emo-DPO [7] systems 
represent an approach that utilizes a defined set of style tags written in natural language to control emo-
tional expression, modeling the relationship between linguistic embedding and speaking emotion domain 
with a pre-trained language model.

A significant drawback of this approach is the limitations in emotional intensity control. Systems, such 
as MsEmoTTS, have implicit predictors, but no explicit control over that characteristic is provided. Other 
challenges include customization issues due to fixed categories set and the need for large labeled datasets 
for training [5].

A different method for emotion encoding refers to representing it as a vector of so-called basic (or fun-
damental) emotions. Zhou et al. [30] present a study on modeling and synthesizing mixed emotions in 
speech synthesis. The paper extensively references Plutchik’s emotion wheel theory, stating eight primary 
emotions: anger, fear, sadness, disgust, surprise, anticipation, trust, and joy, and arranges them in a frame-
work where all the emotional styles can be derived from those [26]. The framework allows users to manu-
ally control emotion rendering by defining an emotion attribute vector with specific percentages for each 
primary emotion, successfully synthesizing complex emotional states like delight (surprise + happy), out-
rage (surprise + angry), and disappointment (surprise + sad) [30]. Similarly, for the EmoMix model [8], the 
authors considered excitement (happy + surprise) and disappointment (sad + surprise) within the intensity 
range for evaluation.

The PAD (Pleasure-Arousal-Dominance) model, also known as the VAD (Valence-Arousal-Dominance) 
model, is a three-dimensional psychological framework developed by Albert Mehrabian and James A. Russell 
to describe and measure emotional states using numerical dimensions [4]. The model represents emotions 
through valence (the pleasantness or unpleasantness of an emotion), arousal (the intensity or energy level as-
sociated with the emotion), and dominance (the degree of control or power one feels in the emotional state). 

This dimensional approach has been widely adopted in emotional speech synthesis systems because it 
provides more nuanced emotional rendering than discrete categorical emotion models [10]. Sivaprasad et 
al. [29] extended the FastSpeech2 TTS architecture, introducing a prosody control block that conditions 
phoneme‑level pitch, energy, and duration on continuous arousal-valence values, enabling fine‑grained, 
interpretable emotional prosody control. EmoSphere‑TTS [10] synthesizes expressive speech by embed-
ding valence‑arousal‑dominance representation into a spherical vector via transformation. This approach 
enables manual control of emotional style and intensity by assigning appropriate angles and lengths to the 
spherical vector. UDDETTS framework [20] introduces a neural codec language model that seamlessly in-
tegrates traditional discrete emotion labels with the continuous VAD model, enabling controllable, expres-
sive TTS through joint optimization in a unified emotional space.

The main drawback of continuous vector emotional representations is the scarcity of annotated training 
data, as dimensional emotion labels (e.g., arousal, valence, dominance) are costly and subjective to obtain 
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at scale. Moreover, models that leverage these representations often require complex architectures and care-
ful tuning to prevent overfitting and ensure interpretable, controllable outputs.

Reference-based Control

Reference-based methods extract style information from example utterances, enabling control without 
explicit annotation. The reference audio provides a direct example of the emotional tone, which the system 
mimics. Reference-based systems use architectures where a reference encoder extracts emotional style embed-
dings from the input sample. This paradigm supports both voice conversion and style transfer applications.

Mellotron [22] is a multispeaker voice synthesis model based on Tacotron 2 [6], which can make a voice 
emote without emotive training data by explicitly conditioning on rhythm and continuous pitch contours 
from an audio signal. It pioneered reference-based emotional control by incorporating global style tokens 
(GST) [31] as learned latent variables alongside reference-based speech conditioning, allowing it to transfer 
text, rhythm, and pitch characteristics from source audio to target speakers while maintaining fine-grained 
control over expressive speech characteristics. Building upon such a reference-based approach, Gener-
Speech [14] proposes a generalizable text-to-speech model that decomposes speech variation into style-
agnostic and style-specific parts through a multi-level style adaptor and Mix-Style Layer Normalization, 
enabling robust zero-shot style transfer for out-of-domain custom voices without requiring adaptation data.

StyleTTS [21] extends the approach by using style encoders that extract emotion-relevant features while 
disentangling them from speaker identity and linguistic content. The system employs adversarial training to 
ensure the sound quality of the reconstructed mel-spectrogram. SC VALL-E [18] adopts the VALL-E [25] 
neural codec language model, considerі speech synthesis as a conditional language modeling task, and uses 
reference audio for speaker cloning and style transfer, including speaking rate, pitch, voice intensity, and 
emotional styles. EmoSphere++ [9] extends the EmoSphere-TTS [10] model and introduces an emotion-
adaptive spherical vector that extracts it directly from reference speech samples, using a multi-level style 
encoder to capture both high-level emotional categories and low-level nuanced expressions for zero-shot 
emotion transfer. 

Reference-based TTS systems face significant challenges in their dependency on high-quality reference 
audio and struggle with generalizing to unseen emotions, speakers, or prosodic styles not represented in the 
training data, while also requiring effective disentanglement of emotional content from other style features 
like speaker identity and linguistic prosody. Additionally, these approaches encounter practical limitations, 
including computational overhead from processing reference audio during inference and the scarcity of 
fine-grained explicit emotion control with this method.

Prompt-based Control

With the rapid development of large language models (LLMs) in recent years, prompt-based approaches 
represent the frontier of controllable emotional TTS, using large language models to interpret and execute 
complex synthesis instructions. These systems go beyond simple emotional labels to understand contextual 
and situational factors and allow users to specify emotions using natural language descriptions or instruc-
tions, e.g., “speak happily” or “whisper fearfully.” This approach is user-friendly, leveraging natural lan-
guage processing (NLP) to interpret prompts.

PromptTTS [28] utilizes a BERT-based style encoder to extract semantic representations from text 
prompts, conditioning a FastSpeech 2-based non-autoregressive acoustic model for mel-spectrogram gen-
eration, paired with a HiFi-GAN vocoder for waveform synthesis. Its successor, PromptTTS 2 [27], inte-
grates LLMs for enhanced prompt understanding and a diffusion-based variation network to model diverse 
emotional styles, improving expressiveness and voice variability. InstructTTS [17] employs a VQ-VAE to 
discretize speech into latent codes, using a diffusion transformer to align text prompts with these codes, 
enabling fine-grained emotional control via a BERT-like approach, and a RoBERTa encoder for instruction 
processing. CosyVoice [6] combines an LLM to enable fine-grained freestyle natural language emotion 
control, using Qwen2.5-0.5B as its backbone with supervised semantic tokens, feeding into a non-autore-
gressive transformer decoder for multilingual zero-shot synthesis, with a style encoder for prompt-driven 
emotion control. 

These systems demonstrate the field’s convergence toward transformer-based architectures for interpret-
ing emotional descriptions. However, challenges around prompt ambiguity and computational complexity 
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persist. Yet, translating natural language emotion descriptions to consistent acoustic realizations remains 
challenging due to the inherent subjectivity in emotional expressions and data availability for a prompt-to-
style alignment system.

Quality Evaluation

Evaluating emotional TTS systems requires assessing both synthesis quality and emotional appropriate-
ness, presenting unique challenges compared to neutral TTS evaluation. 

Objective Metrics

Mel Cepstral Distortion (MCD) quantifies the spectral distance between synthesized and reference emo-
tional speech [34]. Better speech synthesis quality is shown by a lower MCD value, which also indicates a 
higher resemblance between the reference and synthetic speech. Good quality is often indicated by an MCD 
value less than 4; however, substantial distortion may be indicated by values greater than 6. It can be calcu-
lated using the following formula:

where ci
gen and ci

ref are the i-th mel cepstral coefficient (MCC) of generated and reference speech, respectively, 
and M is the total number of MCCs. While widely used and applicable in reference-based systems, MCD 
may not capture perceptually important emotional characteristics.

As pitch level is vastly impacted by emotional state, Gross Pitch Error (GPE) is considered for expres-
sive TTS [5]. It determines the proportion of voiced frames with a pitch deviation of greater than a specific 
threshold (often 20%) [1]. Emotion and style classifiers and speech emotion recognition (SER) models are 
widely used to measure classification accuracy, reflecting the efficiency of the proposed model in generating 
emotional speech [5]. It is worth mentioning that this evaluation relies on appropriate SER method selec-
tion.

Cosine similarity between emotional embeddings quantifies how similar the synthesized and reference 
speech is in terms of emotional expression [34]. It can be used to evaluate emotion-controllable TTS meth-
ods, where higher values indicate better emotional similarity. Emotional embeddings can be extracted using 
pre-trained emotion recognition models, such as x-vector-based systems trained on emotional speech data-
sets, to quantify how well the synthesized speech matches the intended emotional expression of the refer-
ence audio.

The Word Error Rate (WER) [34] is used to ensure intelligibility. By calculating the amount of transcrip-
tion errors, it measures the difference between the reference transcript and the recognized transcript. WER 
is calculated as follows:

where W is the number of wrong words in place of the correct word, M is the number of missed words, E is 
the number of extra words added, and N is the total number of words in the reference transcript. However, 
this metric is highly dependent on the choice of transcription method.

Subjective metrics

The most widely used subjective statistic is the Mean Opinion Score (MOS) [34]. On a scale of 1 to 5, 
listeners judge many characteristics of synthesized speech, including naturalness and expressiveness [10], 
and the result is the average of these scores. Higher ratings denote higher quality. Although MOS is costly 
for extensive assessments, it successfully captures the human perspective [34]. Two TTS audio samples are 
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compared for relative quality differences using the Comparison Mean Opinion Score (CMOS) [5]. After 
hearing paired samples, participants score their preference on a scale, which usually includes both negative 
and positive values (e.g., from -3 to 3) [34], and then it is averaged as in MOS.

Various researchers have employed these metrics in various ways to evaluate expressivity-related char-
acteristics. Specifically, the metrics have been tested on audio samples that encompass diverse emotional 
expressions, distinct speaking mannerisms, and different degrees of intensity [5]. Additionally, these sam-
ples span multiple speech synthesis contexts, including scenarios involving parallel versus non-parallel 
style conversion, as well as familiar versus unfamiliar speaking styles and voices.

Discussion

Emotional TTS systems pose considerable technological problems in terms of feature disentanglement 
and representation, making it difficult to distinguish emotional aspects from other speech features such as 
speaker identification or linguistic content. This can, however, be handled using specialized disentangle-
ment architectures or adversarial training strategies that expressly require the separation of emotional and 
speaker-specific information. Development of interpretable latent space manipulation techniques and con-
trollable generation methods using semantic emotion embeddings could potentially improve fine-grained 
control and interpretability.

Evaluation metrics lack objectivity and standardization, making it difficult to compare different ap-
proaches or accurately measure progress across studies, an issue which cannot be fully eliminated. The 
significant gap in generating computationally efficient models can be bridged using knowledge distillation 
approaches, in which lightweight student models learn from bigger teacher networks, or architectural im-
provements such as separable convolutions and parameter sharing algorithms.

Low-resource languages face even greater obstacles due to minimal emotional speech data availability, 
though cross-lingual transfer learning and multilingual pre-training approaches offer promising solutions to 
explore. Given the daunting challenge of building comprehensive emotional speech datasets spanning di-
verse emotions, styles, speakers, and languages, data augmentation and knowledge transfer techniques be-
come essential for addressing data scarcity in expressive speech synthesis. 

These challenges collectively limit practical deployment, but the convergence of these solution strate-
gies creates opportunities for researchers to make meaningful contributions that advance multiple aspects of 
emotional TTS simultaneously.

Conclusion

The swift progressions in emotional text-to-speech (TTS) synthesis have transitioned from rudimentary 
concatenative methodologies to sophisticated neural architectures capable of generating emotionally reso-
nant and high fidelity speech. This evolution has been significantly propelled by deep learning, which en-
ables intricate management of emotional tone and stylistic variation.

In contemporary systems, transformer-based and diffusion-based architectures are increasingly preva-
lent. Transformers facilitate adjustable synthesis and parallel generation, while diffusion models employ 
iterative refinement to enhance quality. The previously utilized fixed emotive tags have been refined by 
reference-based and prompt-driven control mechanisms, and the incorporation of LLMs has created novel 
strategies for adaptable, and user-centric interaction.

Notwithstanding these advancements, several challenges persist. It remains an obstacle to disentangling 
emotion from speaker identification and content. The acquisition of high-quality emotional data continues 
to be a daunting endeavor, particularly within low-resource languages, and the lack of standardized evalua-
tion leads to inconsistencies in comparative analyses.
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СУЧАСНІ ПІДХОДИ ДО КОНТРОЛЬОВАНОГО  
СИНТЕЗУ ЕМОЦІЙНОГО МОВЛЕННЯ

У статті представлено комплексний огляд сучасних технологій керованих систем для емоційно-
го синтезу мовлення. Проаналізовано еволюцію нейронних архітектур, систематизовано підходи за 
технологіями та методами емоційного контролю. Визначено ключові виклики галузі, що охоплюють 
відокремлення мовленнєвих ознак та дефіцит даних для мов з обмеженими ресурсами. Окреслено 
перспективні напрями розвитку систем емоційно контрольованого синтезу мовлення.

Ключові слова: глибоке навчання, синтез мовлення з тексту, обробка природної мови, емоційний 
контроль мовлення, дифузійні моделі.
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