YK 004.8:004.93
DOI: 10.18523/2617-3808.2025.8.50-56

A. Mykytyshyn, N. Shvai

VALIDATING ARCHITECTURAL HYPOTHESES IN NEURAL
DECISION TREES WITH NEURAL ARCHITECTURE SEARCH

This article introduces an automated and unbiased framework for validating architectural hypotheses
for neural network models, with a particular focus on Neural Decision Trees (NDT5). The proposed meth-
odology employs Neural Architecture Search (NAS) as an unbiased tool to explore architectural variations
and empirically assess theoretical claims. To demonstrate this framework, we investigate a hypothesis found
in the literature: that the complexity of decision nodes in NDTs decreases monotonically with tree depth.
This assumption, initially motivated by the task of monocular depth estimation, suggests that deeper nodes
in the tree require fewer parameters due to simpler split functions.

To rigorously test this hypothesis, we conduct a series of NAS campaigns over the CIFAR-10 image
classification dataset. The search space parameterizes each node by the number of convolutional blocks
and fully connected layers, while all other architectural components are held constant to isolate the effect
of node depth. By applying Tree-structured Parzen Estimator (TPE)-based NAS and evaluating over 300
architectures, we quantify complexity metrics across tree levels and analyze their correlations using Spear-
man s rank coefficient.

The results provide no statistical or visual evidence supporting the hypothesized trend: node complexity
does not decrease with depth. Instead, complexity remains nearly constant across levels, regardless of tree
depth or search space size. These results suggest that assumptions derived from specific applications may
not generalize to other domains, underscoring the importance of empirical validation and careful search-
space design. The presented framework may serve as a foundation for verifying other structural assump-
tions across various neural network families and applications.

Keywords: Neural Architecture Search (NAS), Neural Decision Trees (NDTs), Automated Machine
Learning (AutoML), Computer Vision, Node Complexity.

Introduction

Automated Machine Learning (AutoML) has significantly streamlined the development and deployment of
complex machine learning models by automating various aspects of the machine learning pipeline, including
data preprocessing, feature engineering, model selection, and hyperparameter optimization [4]. A major subset
of AutoML is Neural Architecture Search (NAS), a technique focused specifically on automating the design of
neural network architectures. NAS has demonstrated remarkable success across various domains, consistently
delivering architectures that match or even outperform those designed by human experts [3, 5].

At the same time, Neural Decision Trees (NDTs) have emerged as an innovative class of hybrid machine
learning models, integrating the interpretability and intuitive decision logic of classical decision trees with
the expressive capabilities of neural networks [2]. Despite their practical benefits, several underlying theo-
retical assumptions about their structure remain untested. In particular, a hypothesis proposed by Roy and
Todorovic (2016) states that nodes deeper within an NDT should be structurally simpler, since learning split
functions presumably becomes easier deeper within the tree [9].

However, this assumption has not been validated beyond the original context in which it was proposed
(monocular depth estimation). Unverified theoretical assumptions pose a significant risk, potentially leading
researchers and practitioners towards suboptimal architectural decisions and incorrect generalizations
across different applications. Therefore, rigorous empirical testing of such architectural hypotheses is neces-
sary to ensure reliable design decisions for neural decision trees in diverse tasks.

The objective of this research is to empirically verify the hypothesis that the complexity of neural deci-
sion tree nodes decreases with increasing depth using Neural Architecture Search as an unbiased experi-
mental tool.
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The scientific novelty of the obtained results includes:

o The first systematic, NAS-based empirical validation of an architectural hypothesis regarding the com-
plexity of neural decision tree nodes.

e Empirical evidence demonstrating that the assumption of decreasing complexity with increasing depth,
proposed by Roy and Todorovic, does not generalize across tasks.

The practical value of the obtained results lies in providing a validated methodological approach to
critically evaluate theoretical claims about NDT architectures. Researchers and practitioners can leverage
these findings to guide more reliable and empirically grounded architectural decisions in neural decision
tree design.

Problem Definition

Roy and Todorovic [9] introduce the Neural Regression Forest (NRF) for monocular depth estimation,
in which each split node is implemented by a “shallow” CNN — specifically, one with only one or two
convolutional layers followed by one or two fully-connected layers — and the overall network depth emerg-
es from the stacking of these modules. They conjecture that “it becomes easier to learn the split functions as
we go down the tree,” suggesting that nodes at lower levels should require progressively fewer layers to
achieve the best possible predictive performance.

As aresult of this conjecture, they propose an architecture where the nodes in a tree get “simpler” as they
get closer to the leaves. Specifically, they split the tree into three equally deep layers. “For the top one third
of the tree height, we use CNNs with 2 convolution + pooling layers, and 2 fully connected perceptron
layers. For the lower one third of the tree height (closer to the leaf nodes), we use CNNs with 2 convolution
+ pooling layers and 1 fully connected perceptron layer. Finally, for the bottom third of the tree height, we
use CNNs with 1 convolution + pooling layer and 1 connected perceptron layer” [9].

Drawing directly on their assumption and generalizing it, we formulate our central hypothesis for neural
decision trees (NDTs):

Hypothesis. In neural decision trees, the complexity of each split node, quantified by the number of
convolutional blocks and fully connected layers, decreases monotonically with increasing tree depth.

Proposed Approach

To verify the hypothesis that node complexity in neural decision trees decreases with tree depth, we
employ neural architecture search (NAS) solely as an empirical tool. NAS systematically explores a pre-
defined set of discrete architectural choices by optimizing for a target metric (in our case, accuracy), thus
revealing which per-node configurations best support the task under identical training conditions [1, 3]. By
automating the search, we eliminate human bias in selecting convolutional and fully connected layers, thus
obtaining an unbiased measurement of how complexity varies across different levels.

All candidate architectures are trained and evaluated on the CIFAR-10 dataset, which comprises 60,000
color images of size 32x32 across 10 classes [6]. We choose CIFAR-10 for its status as a standard bench-
mark. Another benefit is that its modest image resolution and well-established augmentation protocols en-
able rapid NAS iterations. It is also worth noting that the decision to select a dataset different from the one
used in the paper where this idea was initially introduced ([9]) is deliberate, as this allows us to test the
general applicability of the hypothesis.

We define our search space by parameterizing each split node at tree level £ with two integer hyperpa-
rameters:

e b, —the number of convolutional blocks at level £
e f,—the number of fully connected layers at level ¢

Each convolutional block replicates the module from [2] — namely, a 3x3 convolution with 256 chan-
nels, followed by batch normalization and ReLU activation. We consider two value ranges for (b, f)): {1,
2} (matching the original setup from [9] at depth ten), and {1, 2, 3} (to probe a broader spectrum of com-
plexity).

All other architectural and optimization parameters remain fixed across experiments: the overall tree
depth d is set per experiment, a double-block stem precedes branching, channel widths are constant at 256,
and the optimizer, learning rate schedule, and augmentation pipeline are identical. This ensures that varia-
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tions in NAS outcomes reflect only the relative efficacy of different (b, f,) choices, allowing for a clear test
of the monotonic complexity hypothesis.

We employ the Tree-structured Parzen Estimator (TPE) algorithm. Each candidate model undergoes
5 epochs of training (“proxy evaluation’), after which the top 10% of architectures (by validation accuracy)
are retrained for 15 epochs to refine the final rankings.

All experiments employ mixed-precision training and a gradient scaler to speed up training. Input im-
ages are augmented with random horizontal flips and random crops to 32x32 (with four-pixel padding),
followed by tensor conversion and normalization using the CIFAR-10 channel means and standard devia-
tions. Optimization uses the AdamW optimizer with a fixed initial learning rate of 1 x 1073,

Architectures are ranked by accuracy on a held-out CIFAR-10 validation set. Accuracy directly mea-
sures the quality of learned split functions in a classification context, providing a principled and unbiased
basis for comparing node complexities [3].

Implementation Details and Reproducibility

All experiments were conducted on Google Colab using an NVIDIA A100 GPU with 32 GB of RAM,
subject to Colab’s 12-hour session limit. The code was written in Python 3 and relied on the PyTorch deep
learning framework for model definition and training [8], as well as Microsoft’s NNI library for the imple-
mentation of NAS [7]. To ensure reproducibility, a fixed random seed of 42 was used for all data splits,
network initialisations, and sampling in the NAS algorithm.

Experimental Campaigns

To test the node complexity hypothesis, we ran six NAS campaigns, each fixing tree depth d and the
discrete knob set for (b, f,) using TPE with median-stop early stopping after 3 epochs. Each trial required
approximately 1 minute for 5 epochs (shorter if stopped early), and all campaigns ran no longer than the
12-hour Colab limit (approximately 700 minutes). All campaigns used a 5-epoch proxy evaluation and
15-epoch retraining of the top 10 % of candidates.

Table 1. Experimental runs that were performed

Run ID Depth d b, f) € Search space size
A \ 3 (1,2} 2x 23= 64
B \ 4 (1,2} 24x 24=1256
C \ 6 (1,2} 26x 26=14,096
D \ 3 {1,2,3} 3% 33=729
E \ 4 {1,2,3} 34x 34= 6,561
F \ 6 {1,2,3} 36 36= 531,441

e Runs A-C probe the original Roy and Todorovic complexity range {1, 2} at depths 3, 4, and 6.
e Runs D-F expand the search to {1, 2, 3} at the same depths.

Each trial sampled a full configuration of {b, ..., b, , f;, ..., f, ,} and returned validation accuracy after
5 epochs; the top 10 % of trials per run were then retrained for 15 epochs for final evaluation.

Run-wise accuracy summaries

Figure 1 (next page) displays a table listing the top-five architectures returned by each campaign after
the 15-epoch retraining phase. Three regularities are evident:

o Tight within-run spread. All five models in a given run differ by <0.01 in top 1 accuracy, showing that
the parameters we searched over most likely do not influence the accuracy that much.

o Depth penalty. Mean accuracy declines as depth increases—from ~0.83 for depth 3 (Runs A, D) to
~0.79 for depth 6 (Runs C, F). Deeper NDTs entail more parameters and longer inference paths, making
them harder to optimize given the fixed 15-epoch budget and 256-channel bottleneck.

o Effect of knob range. For each depth, the runs with the broader option set {1, 2, 3} (D-F) surpass their
{1, 2} counterparts (A—C) by ~0.01. Allowing an extra layer choice evidently enables NAS to fine-tune
node expressiveness without overfitting, hence the modest but consistent gain.
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Figure 1. Table, depicting the top 5 results for each run, measured by validation accuracy after 15 epochs

Taken together, the accuracies fall in the narrow band 0.78 — 0.84, confirming that all architectures are
viable classifiers and that subsequent analyses can focus on node complexity rather than gross performance
differences.

Complexity profiles visualized

Figure 2 (left, 1) plots the mean number of convolutional blocks per level (b: ) for every run, while Fig-
ure 2 (right, 2) shows the analogous curve for fully-connected layers (f,). Shaded markers denote tree depth.
Below are the observations we draw from visually examining the plots:

o The curves are essentially flat; no run exhibits a consistent downward slope.

e Local fluctuations are noise-like, reflecting the stochastic nature of NAS sampling rather than a system-
atic preference for simpler nodes at deeper levels.

e Runs with the larger knob range (D-F) unsurprisingly have higher absolute means, yet their level-wise

profiles are again flat.

1 2

Figure 2. Plots showing the mean FC layers (/) and convolution blocks (2) vs tree level

Visually, therefore, the data do not support the conjectured monotonic decrease in node complexity.

Statistical test of the monotonic-simplicity hypothesis

To formalize the visual impression, we apply Spearman’s rank correlation coefficient p, a non-parametric
measure of monotone association between two variables [10]:
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where x, is the tree level and y, is the corresponding complexity metric (either b, or f,), and n is the total
number of node observations pooled across runs.
We define the null hypothesis and the alternative hypothesis as follows:
e Null hypothesis H: ¢ = 0 (no monotonic relationship between level and complexity).
e Alternative hypothesis H : ¢ <0 (complexity decreases with depth).
Using the pooled dataset, we obtain:

Table 2. The numeric results of the Spearman’s rank-correlation test

Metric p p-value
Conv-blocks b, +0.03 0.75
FC-layers f, +0.11 0.21

Because both p-values are >> 0.05, we fail to reject H,. Moreover, the positive signs of ¢, although small,
run counter to /|, reinforcing the qualitative conclusion: there is no statistical evidence that node complex-
ity diminishes with tree depth under the examined search space and training regime.

Together, the near-identical accuracies, flat complexity profiles, and non-significant Spearman coeffi-
cients collectively refute the monotonic-simplicity hypothesis for neural decision trees on CIFAR-10, at
least within the constraints of the present experimental design.

Hypothesis Evaluation

The central hypothesis under investigation posited that, in neural decision trees, node complexity, mea-
sured by the number of convolutional blocks b, and fully connected layers f,, would decrease monotoni-
cally with increasing tree depth. In other words, deeper split nodes should require fewer layers to achieve
comparable classification accuracy.

However, the empirical evidence fails to support this conjecture. As shown in the previous section, the
mean complexity profiles b, and /] are essentially constant across levels, without any discernible downward
trend. The formal Spearman rank test further confirms that the observed correlations are small and positive
(p = +0.03 for b, ¢ =~ +0.11 for f7) and statistically non-significant (p > 0.05), leading us to retain the null
hypothesis of no monotonic association.

Several factors may explain this departure from the original expectation of Roy and Todorovic. First,
their depth-10 architecture was tailored to monocular depth estimation, a regression task with spatial conti-
nuity, whereas our CIFAR-10 classification problem may impose different representational requirements at
all tree levels. Second, our fixed 256-channel convolutional blocks and limited training budget (15 epochs
plus early stopping) may attenuate any subtle benefits of reduced complexity in lower nodes. Finally, NAS
optimizes for overall accuracy, not explicitly for per-node efficiency, so it may favor uniformly expressive
nodes to maximize global performance under the given constraints.

In sum, within the confines of our search space and training regime, there is no evidence that node
complexity in neural decision trees decreases with depth. This negative result suggests that the “easier-
to-learn” assumption articulated by Roy and Todorovic does not generalize straightforwardly from depth
estimation to image classification, or that more tailored search strategies are required to expose such a
trend.

Conclusion

This thesis provided an empirical evaluation of a critical architectural hypothesis within Neural Decision
Trees (NDTs), specifically the claim by Roy and Todorovic (2016) that nodes deeper within the tree require
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progressively simpler neural structures. Employing Neural Architecture Search (NAS) as an unbiased meth-
odological tool, we systematically explored variations in node complexity, measured by the number of
convolutional blocks and fully connected layers, across multiple tree depths using the CIFAR-10 image
classification dataset.

Our comprehensive experiments and subsequent statistical analyses revealed no support for the mono-
tonic simplicity hypothesis. Contrary to expectations, node complexity remained effectively constant across
all tree levels, and no statistically significant correlation was observed between node depth and complexity.
This finding suggests that architectural assumptions derived from specialized tasks, such as monocular
depth estimation, may not generalize across different domains and datasets, underscoring the importance of
empirically validating theoretical claims in neural architecture research.

While our experiments provide strong evidence refuting the generalized hypothesis, several limitations
remain. The search space, though carefully chosen, was constrained by practical computational consider-
ations, including limited training epochs and fixed convolutional channel widths. Future research could
explore expanded or more nuanced search spaces, including varying parameters per node rather than per
level, different datasets and tasks, and incorporating more advanced NAS strategies or evaluation metrics
that explicitly target node-level complexity.

In summary, this study underscores the necessity for rigorous empirical testing of architectural assump-
tions in neural network research. The negative result regarding node simplicity in NDTs provides important
insights for future architecture design and highlights the critical role of NAS methodologies in facilitating
unbiased, systematic explorations.
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Muxumuwun A. 11., ean H. O.

BAJIJAIIA APXITEKTYPHUX I'IITIOTE3 Y HEHPOHHUX JJEPEBAX
PIIIEHD 3A JJOIMIOMOTI'OIO INOINYKY HEMPOHHUX APXITEKTYP

Y yiu pobomi 3anpononosano asmomamusosany ma 00’ €EKMUBHY MEMOOUKY NepegipKuU apXimeKmypHUux
2inomes 3a 00NOM02010 NOULYKy Hetipounux apximexmyp (Neural Architecture Search, NAS). Ocnosna ides
nonsieae 8 3acmocysanui NAS sk incmpymenmy O OYiHKU MEOPEeMmUUHUX NPUnyujeHsb wooo CmpyKmypu
Mooeneti 6e3 pyuHO20 HANAWMY8AanHs apXimekmyp abo 6naugy cyo’ ekmuenux piuteib 0ocaionuxa. /s oe-
MOHCmpayii nioxody 6yn0 nepegipero 2inome3y Npo me, Wo CKIAOHICMb 8Y31i8 Y HEeUPOHHUX 0epesax pi-
wienv (Neural Decision Trees, NDTs) smenuyemucs 3i 36invuienusam enubunu depesa. Lle npunyujenns 3y-
cmpivaemvpCcsi 6 HAYKOSIl JNimepamypi ma SUKOPUCHOBYEMbC SIK  OOIPYHMYGaHHs 01 Nnobyoo6u
cneyianizoeanux apximekmyp, 0OHAK pauiuie He OYN0 nepesipere Ha CUCMeMAMUYHIl eKCnePUMEeHMAIbHIll
OCHOSL.

YV meoicax docnioxcenns 6yno pospobneno noGHicmIO agmoMamu308aHull eKCHepuMermanvhull gpetim-
80K OJIs 2eHepayii, HA8UAHHSA Ma OYIHIOBAHHs comenb apximexmyp NDT 3 pisnumu kougicypayismu 6y3nis.
st nowyxy egpexmusnoi cmpykmypu oepes Oyio gukopucmano memoo bdaeciscvkoi onmumizayii (Tree-
structured Parzen Estimator, TPE). Cxknaouicms 8y31i6 OYiHI08ANU 30 KIIbKOMA MEMPUKAMU. KITbKICMIO
napamempis, KilbKicmio oO4UCTIO8AIbLHUX ONepayill, KLIbKiCmio HelpoHis y wiapi ma enubunoio wapy. J{us
aHanizy 36 13Ky MIdC 2IUOUHOIO 8Y311i6 | IXHbOI CKIAOHICIMIO 3ACMOCO8Y8ANU KOePIYIEHm Pan2060i Kopensi-
yii Cnipmena (Spearman's rank correlation coefficient).

3a pe3yrbmamamu 064UCTIOBANLHOLO eKCnepuMeHmy, wo oxonue nonao 300 3eeneposanux moodeneii Ha
CUHMeMUYHOMY KLacu@ikayitinomy oamacemi, He OVI0 8UA8NIEHO HCOOHOI cmabinbHOi abo cmamucmuyHo
SHAYYWOI 3a1eHCHOCIE Midic IUOUHOIO 8Y31a Ma 1020 cKladHicmio. Ompumani pe3yibmamu ceiouams npo
me, Wo NPUnYueHHs, cQhOpMoBani Ha OCHOBL OKpeMUx Npukiadie abo iHmyiyii, Moxcyms He Y3a2albHI08a-
mucs Ha iHwi 3a0a4i abo domeHu. Lle niokpecnioe 8axciusicms eMnipuyuHoi nepesgipky meopemuiHux apxi-
MeKmypHUX MIpKY8aHb, A MAKONX HEOOXIOHICMb Y8ANCHO20 NPOEKMYBAHHS NPOCHOPY NOULYKY 8 NAS.

3anpononosanuii nioxio moowce 6ymu BUKOPUCTIAHULL 0N NEPeBipKU THUUX aPXIMeKmypHUX 2inomes
Y DI3HOMAHIMHUX MUNAX HEUPOHHUX Mepedic, WO pooums 1020 NepCReKMUGHUM THCMPYMEHMOM Y 00CTi-
021CeHHAX Y chepi asmomMamu308aH020 MAUUHHO20 HABUANHS.

KurouoBi c10Ba: nonyk HEMPOHHUX apXiTEKTyp, HEHPOHHI JiepeBa pillleHb, aBTOMATH30BaHE MAIlTHHE
HaBYaHHS, KOMIT FOTEPHUH 31p, CKIIAJHICTh BY3IIiB.

Mamepian nadiiiwos 16.06.2025
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