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ROBUSTNESS OF NEURAL DECISION TREES TO NOISE
IN INPUT DATA FOR IMAGE CLASSIFICATION TASKS

Neural networks, particularly convolutional neural networks (CNNs), have demonstrated high effec-
tiveness in image classification tasks. However, they are known to be vulnerable to input data perturba-
tions and have weak interpretability due to their black-box nature. In contrast, traditional decision trees
(DT5) provide transparent decision-making processes, but are limited to low-dimensional or tabular data,
restricting their field of application in computer vision tasks such as image classification. To address this
gap, a hybrid architecture known as Neural Decision Trees (NDT5) has emerged, combining strong gener-
alization and learning capabilities of neural networks, with transparent hierarchical inference and inter-
pretability of DT5.

The article investigates the robustness of NDTs to noise in input data for image classification tasks.
Despite the extensive studies covering the robustness of both CNNs and traditional DTs against various
forms of input perturbations, the robustness of NDT models remains a largely underexplored area. This
study provides two robust training methods to improve robustness: constant noise learning and incremental
noise learning, originally developed for CNNs, but which can be effectively applied to NDT-based architec-
tures and significantly improve the robustness to noisy images for models. These methods involve adding
perturbed samples via a Gaussian blur during the training stage. The noisy test set consists of images per-
turbed by a Gaussian blur and is used to evaluate the robustness performance.

A series of experiments were conducted on the CIFAR-10 dataset using the original training baseline
and robust training methods. The results demonstrate that constant and incremental noise learning signifi-
cantly improve the robustness of all tested NDT models to noisy images compared to their original training
performance. While the ResNet18 baseline model demonstrates higher overall performance, the NDT mod-
els show comparable robustness improvements using the proposed robust training strategies. Constant
noise learning offered an adjustable trade-off between performance on clean and noisy images, while incre-
mental noise learning provided a more stable training process. The first method is considered preferable
due to the simplicity of implementation.

This study empirically confirms that NDT models can effectively use methods adapted from CNNs to
improve their robustness against perturbations in input data. An NDT framework was developed to conduct
training and validation using a standardized shared pipeline. It is available via the link: github.com/
MikhailoMokryy/NDTFramework.

Keywords: Neural Decision Trees, machine learning, robustness, image perturbations, image classifica-
tion, computer vision, convolutional neural networks.

Introduction

The field of computer vision, particularly image classification tasks, has advanced significantly with the
introduction of convolutional neural networks (CNNs), which demonstrate remarkable generalization abili-
ties for high-dimensional input data. However, they are not ideal, suffer from a lack of interpretability due
to their black-box architecture, and are vulnerable to perturbations in input data [3, 7, 9, 14]. Such images
can create misclassifications by a neural network (NN), which leads to poor performance. The robustness of
traditional decision trees (DTs) to noise has been studied only for low-dimensional or tabular data due to
their limited field of application. To extend this field, a hybrid architecture referred to as Neural Decision
Trees (NDTs) has been proposed [1, 4, 6, 8, 11, 13]. The NDT model combines two distinct architectures —
CNN and DTs, resulting in a tree-based architecture capable of solving image classification tasks by com-
bining a strong generalization ability acquired from CNNs with the interpretability of a DT hierarchy. While
the robustness of CNNs and DTs to noise has been extensively studied, NDT models remain largely under-
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explored. This study aims to investigate methods that can be incorporated to improve the robustness of

NDTs.

Previous efforts to solve the challenge of improving the robustness of NNs, including defensive strate-
gies, have drawbacks and do not cover all possible input perturbation forms. Robust image classification,
focused on real-world alterations such as hardware defects or environmental distortions, uses different train-
ing strategies, including constant noise learning, incremental noise learning, and architecture modification
[14]. Robust training methods for traditional DT models are also proposed, but they primarily target low-
dimensional or tabular data and do not cover the field of image classification tasks [2, 12, 16]. The robust-
ness of existing NDT models to input data noise is largely unexplored. Given the limited understanding of
NDT robustness to noisy images, this study investigates whether learning strategies developed to improve
the robustness of CNN models can be effectively applied to NDT-based architectures and demonstrate
comparable robustness improvement.

To validate the proposed approach, a series of experiments were conducted on the CIFAR-10 dataset,
which is a widely used benchmark for image classification tasks. Image perturbations are created by apply-
ing a Gaussian blur to input samples. These perturbed images are used both to evaluate model robustness in
experiments and as a part of the robust training process. The experiments involve evaluating the robustness
of various models using the original training baseline, constant noise learning, and incremental noise learn-
ing strategies. The constant noise learning method incorporates a fixed proportion of perturbed images
during the training phase, with noise applied at varying probabilities: 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. In contrast,
the incremental noise learning approach gradually increases the proportion of noisy images during the train-
ing phase, starting from a low initial level, eventually almost reaching the size of the original training set in
the final stage of training. In total, 40 models were trained under various conditions to evaluate their perfor-
mance on clean and noisy test sets. The trained models include NDT models: Deep Neural Decision Tree,
Deep Neural Decision Forest, and Neural Backed Decision Trees variations with hard and soft inferences,
as well as the baseline ResNet18 model for comparison.

Main contributions of this study:

1. A comprehensive investigation of the robustness of NDT models for image classification tasks, focusing
on the impact of perturbed images on these models’ performance.

2. Demonstration that methods to improve robustness, originally developed for CNNs, specifically con-
stant and incremental noise learning, can be successfully applied and significantly improve the robust-
ness of NDT models against input perturbations.

3. Empirically determined these findings through a series of experiments under various conditions on the
CIFAR-10 dataset, providing detailed performance metrics including model accuracy on clean and noisy
test sets, accuracy drop, and robustness gain.

The rest of the paper is organized as follows: the Related Work section provides a general literature
overview of NDT models and studies about improving robustness to noisy input samples for CNNs, tradi-
tional DTs, and the current state of NDT research. The Methodology section describes the NDT architec-
tures and strategies to improve robustness. The Experiments section outlines the CIFAR-10 dataset, the used
models, including their hyperparameters, and the overall training workflow. In the Results and Discussion
section, results of experiments are presented in tabular and graphical form, with a detailed comparison be-
tween models and methods to improve robustness. Finally, the Conclusion section provides a comprehen-
sive summary of this study.

Related Work

Early attempts to combine neural networks and decision trees, known as Hierarchical Mixtures of Ex-
perts (HMoE), were introduced by Jordan and Jacobs [10]. The HMoE architecture has a routing function:
a linear classifier in each tree node, which decides where to send an input sample: to the left or right branch,
passing it down a fixed tree structure. A more advanced, Soft Decision Trees (SDT), the base part of many
NDT architectures, which is a fuzzy DT used for classification and regression tasks, appeared in Suarez and
Lutsko [15] work. It is built with consideration of data partial membership in the tree nodes that form the
tree structure. It was a key part in the future development of NDTs, allowing the use of the back-propagation
method for training models. The next significant improvement of NDT was made by Kontschieder et al. [4]
by enhancing soft DTs with an updated routing function in each node that contains a neural linear layer and
sigmoid activation function. Their neural decision forest model (ANDF) is an ensemble of DTs in which the
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whole CNN architecture, excluding the final linear layer, is used as the root transformer, which extracts
features and passes them to tree-structured classifiers. Another vision of NDTs development presented tree-
like structures of NNs with a routing mechanism. loannou et al. [6] introduced a Conditional Network
model that reduces the computational load and the number of CNN architecture parameters by distributing
computations through a hierarchical structure: a directed acyclic graph. This model uses an MLP-based
route and achieves the same level of accuracy on image classification tasks with lower computational cost.
Frosst et al. [8] utilized a NN to extract knowledge from it and use it in the SDT model training process.
Thus, a NN provides a more informative soft target for training. The soft DT has learning filters to make
hierarchical decisions, based on input targets in every internal node and a static probability distribution over
the output classes for every leaf node. Tanno et al. [1] proposed adding adaptive architecture growth support
to NDT, a feature of DTs. The Adaptive Neural Trees (ANT) model is constructed using a greedy algorithm
that selects the best option between increasing the tree’s depth and partitioning the input space before the
model training phase. Unlike previous works, the Neural-Backed Decision Trees (NBDT) model introduced
by Wan et al. [11] addresses the limitation of NDT models: the trade-off between accuracy and interpret-
ability. It employs a WordNet lexical database to assign a selected concept to each tree node to improve
model interpretability by labeling. NBDTs replace the final linear layer of the NN with a differentiable se-
quence of decisions and uses a hierarchical tree loss for model training. A novel approach to learning trees
from deep NN (DNN) architecture, called Self-born Wiring (SeBoW), was proposed by Chen et al. [13]. It
extended the ANT architecture growth ideas by using self-born neural trees that evolve themselves from a
user-designed mother DNN architecture, instead of growing trees progressively or by using greedy algo-
rithms. This self-born learning procedure allows for global-level tree-architecture parameter optimization
over the neural tree search.

The generation of perturbed images, designed to cause a misclassification in a NN, has been extensively
studied. These images are commonly referred to as adversarial examples. The early foundational work on
adversarial example misclassification was covered by Goodfellow et al. [9]. Their work revealed that the
linear nature of NNs is one of the main reasons why NN are prone to adversarial examples. Input data is
made by adding a selected adversarial perturbation to an original sample. Subsequent research by Papernot
et al. [7] introduced a defense mechanism called defensive distillation to reduce the negative impact of ad-
versarial examples on image classification, highlighting the fundamental nature of NN vulnerabilities. Car-
lini and Wagner [3] demonstrated that defensive distillation has some drawbacks and does not cover all
adversarial examples, and created a set of attacks that can be used to improve the robustness of NNs. Stock
et al. [14] proposed comprehensive strategies for robust image classification, examining defensive training
techniques and architecture modifications that improve robustness to noisy input data for NN models. Their
study focuses on real-world alterations that occur when an image is captured and can be caused by hardware
defects or environmental distortions. Different techniques were used for altering input data to create digital
augmentations, such as single-pixel modification, noise, and blur.

Research on adversarial examples and model robustness has been extensively conducted for linear
models and NNs. However, the impact of adversarial examples on tree-based model robustness remains
poorly studied. Unlike NN, tree-based models are not differentiable, have a hierarchical structure, and
are interpretable due to their nature, which can lead to the assumption that they are more robust than
CNNs. However, Chen et al. [12] show that tree-based models can also struggle against adversarial ex-
amples. They investigate the robustness of tree-based models and the impact of adversarial examples on
both classical DTs and more advanced ensemble boosting methods. A novel robust DT training frame-
work based on a robust splitting function was proposed to improve robustness. Further ideas were pre-
sented by Andriushchenko and Hein [2]. This paper identified a drawback of the previously proposed
method: a lack of robustness guarantee. The authors proposed robust training methods that achieve
a provable robustness for boosted trees, and the results are comparable with CNN-based methods. Vos
and Verwer [16] proposed a novel method for training robust DTs called growing robust trees, or GROOT
for short, which adds a parameter to control a trade-off between model accuracy and robustness against
adversarial examples.

All existing tree-based methods that improve robustness focus primarily on low-dimensional and tabular
data. NDT robustness against adversarial examples remains underexplored. To address this gap, this study
aims to investigate the impact of images perturbed by noise on the robustness of NDT models and determine
whether robust training methods originally developed for CNN models can be effectively applied to NDTs,
demonstrating improvements in robustness.
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Methodology

DTs are a tree-structured machine learning method with internal decision nodes and prediction nodes,
known as leaf nodes, used for low-dimensional or tabular data for classification or regression tasks. In
contrast, NNs, including CNNs, are powerful models with strong generalization capabilities, widely used
for computer vision tasks involving image classification. NDT models aim to combine these two distinct
architectures to provide high performance on high-dimensional data, strong generalization and learning
features, abilities obtained from NNs, with interpretability and transparent inference of a DT hierarchy. To
achieve this, NNs should be integrated into a tree structure by implementing a differentiable routing func-
tion that controls how samples traverse down the tree. It unlocks the usage of gradient descent-based opti-
mization methods with back-propagation during the training stage.

Generic NDT can be divided into three main modules:

1. Router. This decision module is responsible for sending input data to the child nodes. Each internal
(decision) tree node contains a router module, which performs a routing function and partitions the
input space. This mandatory module of NDTs is closely related to the reasoning mechanism of the
model.

2. Solver. This prediction module is essential in NDT architecture. Each leaf (prediction) node contains a
solver module that produces the outcomes. Depending on the implementation, it can provide a final
output of both the class hierarchy and the static probability distribution over these classes.

3. Learner. A transformer module is assigned to every edge of the tree. The learner module transforms
input samples from the parent node and passes them down to the child nodes. However, it is an optional
module in NDTs. While some architectures, like ANT, incorporate it for representation learning, most
NDTs use an identity function, passing features down the tree without data transformation.

Different NDT models are used in this paper to evaluate robustness against noise in input data, alongside
a baseline ResNet18 model [5] for comparison.

Deep Neural Decision Forest (ANDF) is the first model considered for evaluating robustness to noise in
input data. The model structure is quite straightforward. It uses a CNN architecture without the last fully
connected linear layer to extract features, while a decision forest produces final predictions. The representa-
tions obtained from the trained CNN are passed to an ensemble of DTs with soft inference. These represen-
tations provide routing functions for all nodes in the forest of trees.

Unlike a standard decision forest with binary and deterministic routing, the ANDF model uses proba-
bilistic routing. Routing functions, which determine the routing direction decisions for each internal
node, are an output of Bernoulli random variables and are defined by a sigmoid activation function. When
a sample traverses down a tree to a leaf node, the corresponding tree predictor gives the distribution over
output classes. With this stochastic routing, each leaf node predictor provides a result averaged according
to the probability of a sample reaching a leaf. The final prediction from a single tree is computed as a sum
over all leaves of the learned class distribution multiplied by its routing probability. Then, the final ANDF
model prediction for a sample is obtained by averaging the predictions of each tree in the ensemble.
A learning procedure requires estimating both internal node parameters, responsible for decisions, and
the leaf node parameters, responsible for the output predictions. The dANDF model uses a log-loss func-
tion and a two-step optimization strategy. Internal node parameters are randomly initialized and iterated
during the learning procedure for a predefined number of training epochs. During each training epoch,
the prediction parameters of all leaf nodes are updated independently for each tree by retrieving the cur-
rent parameters from internal nodes, using a specific iterative scheme that solves a convex optimization
problem.

Next, the training set is split into random mini-batches. The Stochastic Gradient Descent (SGD) optimi-
zation algorithm updates internal node parameters for each mini-batch. The original model structure is de-
signed as an ensemble of DTs with soft inference, but it can also be converted into a single DT. This model
is referred to as Deep Neural Decision Tree (AINDT). It has an identical structure but uses one tree instead
of an ensemble of DTs.

At first glance, the next model structure looks similar to the previous model, utilizing a ResNet18 archi-
tecture without the final layer, which is replaced by a DT. In addition, much attention is given to model in-
terpretability.

NBDT model implementation employs a differentiable oblique DT and incorporates several key design
choices:
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1. Path probabilities for inference. They help the model to tolerate highly uncertain intermediate decisions.

2. Induced hierarchies. Hierarchies are built from pre-trained NN weights to decrease the impact of
overfitting.

3. Tree Supervision Loss. Training with surrogate hierarchy loss helps the model to make significantly
better high-level decisions, leading to improved model generalization and performance.

4. Pure leaves. Each leaf corresponds to one pure class, allowing the model to select one path from the root
to the leaf.

Similar to the INDF implementation, the learning procedure shares many similarities. Input samples are
transformed into feature representations from the ResNetl8 NN backbone. After the feature extraction
process, a final fully-connected layer is replaced by an oblique DT with soft inference. For each input
sample and tree node, the probability of traversing to each child is computed by applying a softmax function
of the inner product between the extracted features and the child node weight. The path probability for a leaf
node representing a selected class is computed as a product of the traversal probabilities of each node along
the unique path from the root to that leaf.

The next step is to build an induced hierarchy, which is essential for the NBDT model. Using data-based
hierarchies like information gain or existing hierarchies like WordNet has notable drawbacks. The former is
prone to input data overfitting, and the latter emphasizes conceptual rather than visual similarities.

NBDT is constructed using the hierarchy derived from pre-trained model weights to address this limita-
tion. The process of the induced hierarchy creation starts with the final fully-connected layer weights from
the ResNet18 backbone, viewing each row vector as a class representation. Next, the hierarchical agglom-
erative clustering is performed on normalized class representatives, iteratively pairing tree nodes and groups
of nodes. For leaf nodes, the weights are normalized row vectors, while for internal nodes, the weights are
the average of the weights of all leaf nodes within the corresponding subtree.

After the induced hierarchy generation, the decision nodes are labeled using the WordNet lexical data-
base hierarchy of nouns. The earliest common ancestor for all leaf nodes in a subtree is identified to assign
a corresponding WordNet noun to an internal node.

A hierarchical loss named Tree Supervision Loss is proposed to improve the NBDT training process.
Being a modified cross-entropy loss, it is calculated over the class distribution of path probabilities. The
total model loss is a weighted sum of the original cross-entropy loss and the Tree Supervision Loss. Tree
Supervision Loss includes two variants: the Hard Tree Supervision Loss, which applies a cross-entropy at
each node, and the Soft Tree Supervision Loss, which computes a cross-entropy loss over the distribution
of leaf probabilities. Accordingly, based on the Tree Supervision Loss function variant, the NBDT inference
can be either soft or hard. Despite hard inference being more intuitive and improving model interpretability,
starting at the root node, each sample is sent to the child node with the most similar representative and tra-
verses down the tree until a leaf node is reached. In the original paper, an NBDT model with hard inference,
referred to as Hard NBDT, underperforms the NBDT model with soft inference. It was decided to evaluate
both models’ robustness to input perturbations.

The Gaussian blur method is used to create image perturbations. It is based on 2D Gaussian filtering,
achieved by shifting a kernel filter over the image and performing a convolution based on the kernel size for
each pixel in the image, without changing its dimensions. The kernel size depends on the value of o, the
standard deviation of the distribution. As o increases, the kernel size increases accordingly, resulting in a
more blurry image. The Gaussian function with (x, y) coordinates relative to the kernel center is shown
below:

Constant noise learning is a straightforward method for training models that uses a predefined part of the
perturbed data during training. The perturbed data remains fixed during training, generalizing from the
original data with a certain proportion of modified samples during representation learning. Images perturbed
by a Gaussian blur are used, with a certain part of the noisy images selected for each experiment. This
method aims to achieve both high performance on clean images and noisy images, based on a proportion of
perturbed samples in a training set. With an adjustable noise application probability, the constant noise
learning method can significantly enhance the robustness of NDTs and the ResNet18 model to input noise,
while remaining simple to integrate into the model training pipeline. More details are provided in Algo-
rithm 1.
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Algorithm 1. Constant noise learning algorithm

The incremental noise learning method is a more complex method for improving the model’s robustness.
This strategy gradually adds perturbed data to the training set, progressively increasing the proportion with
each training epoch. Training begins with a small proportion of perturbed data, and in the final stage of
training, the proportion of perturbed data can reach almost the same size as the original training set. The
proportion of noisy images to be added is computed based on the current epoch number and batch size,
while the set of noisy images from previous epochs remain unaltered. It is assumed that this method is more
effective in improving the robustness of NDT models, as it gradually introduces perturbed images based on
the current stage of training, which can help the model learn sample features more naturally and generalize
them better. A detailed implementation is provided in Algorithm 2.

Algorithm 2. Incremental noise learning algorithm

Experiments

The experiments are conducted on the CIFAR-10 dataset. It contains 60,000 images, including a training
set of 50,000 images and a validation set of 1,000 images. The dataset is labeled with 10 different classes,
with an equal number of images per class. Each sample is a 3-channel RGB image with square dimensions
of 32 pixels. The CIFAR-10 dataset is widely used to validate computer vision tasks, particularly image
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classification. It is well-suited for the needs of this study and provides sufficient input data complexity,
making it relevant for robustness experiments.

Common hyperparameters are used for training and shared across all models. The number of training ep-
ochs is set to 40. A fixed random seed of 1 is applied to make all experiments more consistent and to provide
fair results. A Gaussian blur ¢ value is set to 0.8, with the corresponding kernel filter size of 5 for image per-
turbation. An example of a perturbed image with Gaussian blur and clean images is demonstrated in Fig. 1.

Figure 1. Clean and noisy images from CIFAR-10

Training hyperparameters, including learning rate, input batch size, and others, vary according to the
model.

Both dNDF and dNDT models use a batch size of 64. The tree structure has a depth of 8. In the case of
the ANDF model, the ensemble contains 20 trees. This implementation employs the Adam optimization al-
gorithm instead of the original SGD optimization used in the paper, with weight decay of 17 and a learning
rate of 17*. For training models, a negative log-likelihood loss is applied. As a NN module, a 3-block CNN
is used, each composed of 2 convolutional layers and batch normalization layers, the second layer in each
block is followed by max pooling and dropout.

A batch size of 128 is used for training NBDTs and ResNet18 models. Two types of NBDT models are
used in experiments: one with soft inference and another with hard inference.

Although NBDTs and ResNetl8 models share the same ResNetl8 backbone architecture and have
similar training pipelines, their loss functions are different.

A NBDT model (with soft inference) uses a Soft Tree Supervision Loss during training, Hard NBDT
uses a Hard Tree Supervision Loss, and ResNet18 uses a cross-entropy loss widely used for classification
tasks. The NBDT, Hard NBDT, and ResNet18 models are trained with the SGD optimization algorithm with
0.9 momentum, 5* weight decay, and starting learning rate of 0.1 with a cosine annealing schedule where a
maximum number of iterations is set to total epochs.

The constant and incremental noise learning training pipeline includes several new hyperparameters.
Constant noise learning experiments were conducted by applying perturbed images to the original training
set with varying probabilities denoted as p. The values of p are set to 0.05, 0.1, 0.2, 0.4, 0.6, and 0.8. For
incremental noise learning experiments, the training process is configured to start with an initial noise level
of 5 %, which gradually increases to a maximum of 95 % on the final training epoch.

Overall, 5 selected models proceeded through 8 learning procedures, resulting in 40 models trained
under varying conditions on the CIFAR-10 dataset. Each model was trained using a regular training method
with the original training set, a constant noise learning method with 6 different noise application probabili-
ties, and an incremental noise learning method.

Experimental results are presented in a subsequent section.

Results and Discussion

The results of constant noise learning and the original training baseline are presented in Table 1, Table 2,
and Table 3, evaluating the effect of the robust training strategy on model performance on the image clas-
sification tasks with validation on both clean and noisy images.
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In Table 1, the performance of the model trained using the original baseline is compared against robust-
ness to Gaussian blur. The performance is evaluated on both the original CIFAR-10 test set, which consists
of clean images, as well as a noisy test set, containing images perturbed by Gaussian blur. The evaluation
metrics are referred to as clean accuracy and noise accuracy, respectively. Additionally, the accuracy drop
evaluation metric is used to demonstrate the performance drop on images with noise. Each model shows a
significant performance degradation on the Gaussian blur test set, with an accuracy drop from 27.81% on
the ANDT model to 36.86% on NBDT. The difference between NBDT and Hard NBDT models is also no-
table at 5.34%, indicating that NBDT with hard inference is less affected by noisy images than NBDT with
soft inference. The original training baseline performance results are compared to robust training methods
that should improve robustness across all models.

Table 1. Original training baseline performance

Model Clean accuracy Noise accuracy Accuracy drop
dNDT 85.92% 58.11% -27.81%
dNDF 86.21% 58.09% -28.12%
ResNet18 93.75% 60.63% -33.12%
NBDT 93.48% 56.62% -36.86%
Hard NBDT 93.94 62.42% -31.52%

Figure 2. Constant noise learning performance on models

The results of the constant noise learning method using various application probabilities of perturbed
images p to improve robustness, are presented in Table 2 and Table 3. Table 2 demonstrates the performance
of each model on both clean and noisy images. Based on these results, Fig. 2 visualizes a performance
change of each model depending on the noise probability p.

Table 2. Constant noise learning performance

Model Acc. p=0.05 p=0.1 p=0.2 p=0.4 p=0.6 p=0.8
dNDT Clean 85.35% 85.49% 85.26% 85.03% 83.92% 83.09%
dANDT Noise 79.37% 80.83% 80.85% 82.90% 82.27% 83.64%
dNDF Clean 86.21% 85.64% 85.80% 85.46% 84.55% 83.37%
dNDF Noise 79.16% 80.00% 82.66% 83.48% 83.01% 83.44%
ResNet18 Clean 93.23% 93.83% 94.04% 93.23% 93.21% 92.62%
ResNet18 Noise 91.22% 92.01% 93.15% 92.51% 93.07% 92.81%
NBDT Clean 93.49% 93.58% 93.55% 93.39% 92.85% 92.24%
NBDT Noise 91.19% 91.92% 92.71% 92.88% 92.63% 92.47%
Hard NBDT Clean 93.60% 92.96% 93.06% 93.10% 92.82% 92.46%
Hard NBDT Noise 90.75% 91.11% 92.00% 92.16% 93.05% 92.41%

Table 3 presents the accuracy drop for each model at different p values, along with a robustness gain
metric. This metric indicates the model accuracy change from baseline to robust training on a noisy test set.
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Table 3. Constant noise learning vs Original baseline performance

Model Metric p=0.05 p=0.1 p=0.2 p=0.4 p=0.6 p=0.8
dNDT Acc. Drop -5.98% -4.66% -4.41% -2.13% -1.65% +0.55%
dNDT R. Gain +21.83% +23.15% +23.40% +25.68% +26.16% +28.36%
dNDF Acc. Drop -7.05% -5.64% -3.14% -1.98% -1.54% +0.07%
dNDF R. Gain +21.07% +22.48% +24.98% +26.14% +26.58% +28.19%
ResNet18 Acc. Drop -2.01% -1.82% -0.89% -0.72% -0.14% +0.19%
ResNet18 R. Gain +31.11% +31.30% +32.23% +32.40% +32.98% +33.31%
NBDT Acc. Drop -2.30% -1.66% -0.84% -0.51% -0.22% +0.23%
NBDT R. Gain +34.56% +35.20% +36.02% +36.35% +36.64% +37.09%
Hard NBDT | Acc. Drop -2.85% -1.85% -1.06% -0.94% +0.23% -0.05%
Hard NBDT R. Gain +28.67% +29.67% +30.46% +30.58% +31.75% +31.47%

The dNDT and dNDF models show higher volatility on the noisy test set at lower p values. However,
from a p value of 0.2, the performance drop becomes closer to NBDTs and ResNet18 models. Based on the
performance of models trained with constant noise learning, NBDTs and ResNet18 models are less depen-
dent on varying probabilities of noisy images. The optimal performance, showing high accuracy on both
clean and noisy test sets, is achieved at p values of 0.2 and 0.4. The best robustness results are obtained with
p values of 0.6 and 0.8, causing a slight decrease in performance on clean images. The robustness gain
compared to the original baseline performance for each model is significant, even the smallest p of 0.05
provides a robustness gain from 21.83% on NDT to 34.56% on NBDT.

Incremental noise learning provides excellent robustness results with minimal performance drop on the
clean test set for ANDT, ResNet18, and Hard NBDT models, and a small performance improvement for
dNDF and NBDT models. A trade-off between accuracy on the clean and noisy test sets is minimal for every
model. Robustness gain performance ranges from 27.40% on NDT to 37.0% on the NBDT model. Results
are presented in Table 4.

Table 4. Incremental noise learning vs Original baseline performance

Model Clean acc. Noise acc. Acc. Drop Robust. Gain
dNDT 83.00% 82.59% -0.41% +27.40%
dNDF 83.86% 83.92% +0.06% +28.18%
ResNet18 93.25% 93.09% -0.16% +32.96%
NBDT 92.71% 92.84% +0.13% +37.00%
Hard NBDT 92.28% 92.23% -0.05% +31.47%

Figure 3. Loss changes of NBDT for constant and incremental noise learning

The constant learning method offers an adjustable trade-off between clean performance and robustness
on noisy images, while incremental noise learning provides more stable results without relying on fine-
tuning the application probability. Both methods can improve robustness to image perturbations without
compromising performance on clean images. Although the dNDT and dNDF models have lower baseline
performance, they achieve comparable robustness improvements using constant and incremental noise
learning training strategies. For a detailed comparison of constant noise learning with a p value of 0.6 and
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incremental noise learning, an NBDT model is selected. The training and validation loss for each training
epoch for both approaches is demonstrated in Fig. 3.

Training losses are almost identical across 40 epochs, starting with very similar initial loss values, then
steadily decreasing, showing a healthy training curve without overfitting. Validation losses have minor
changes, indicating that the two models generalize differently. A constant noise learning method achieves
slightly better final performance due to a lower loss with a notable spike at epoch 8, while incremental noise
learning demonstrates a more stable curve with fewer sharp spikes. Thus, the NBDT model trained with
incremental noise learning has a more stable validation loss progression. Although incremental noise learn-
ing demonstrates better stability during training and notable improvements, constant noise learning provides
a simpler implementation, showing identical results. It is determined to be the preferred method for improv-
ing the robustness of the models to noise in input data.

Overall, a ResNet18 model shows slightly better results across all experiments. Moreover, it signifi-
cantly outperforms dNDT and dNDF models in both training strategies, alongside the original training
baseline. This confirms the assumption that, while the NDT models offer better interpretability, they involve
some performance trade-offs. However, NDT models demonstrate comparable robustness improvements
with robust training methods, demonstrating that they can benefit from the CNN-based method to improve
robustness.

Conclusion

This work investigates the robustness of various NDT models, including dINDT, dNDF, NBDT, and Hard
NBDT, to perturbations applied by a Gaussian blur in input data. The CIFAR-10 dataset is used for training
models and validating experimental results. A ResNet18 model is used as a baseline for comparison with
NDT models. Using the original training baseline, all models experienced a significant performance drop on
images perturbed by a Gaussian blur. Two methods, originally developed to improve the robustness of CNN
models, are applied to enhance robustness: constant noise learning and incremental noise learning. Experi-
mental results demonstrate that both methods significantly improve robustness to noise for all models com-
pared to the original model training baseline. Outcomes of the two robust training methods are nearly
identical, showing no noticeable differences. Constant noise learning method offered an adjustable trade-off
between performance on clean and perturbed images, while incremental noise learning provided more stable
training results. However, constant noise learning is preferable for improving model robustness to noise in
input data due to the simplicity of implementation. The experiments show that even a small part of noisy
images significantly improves the robustness of the model.

Overall, NDT models demonstrate improvements in robustness to noise in input data comparable to the
baseline ResNet18 model using both constant and incremental noise learning methods, indicating that NDTs
can effectively benefit from adapted methods originally developed for CNNs.
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Moxpuii M. B., llsaii H. O.

CTIMKICTh HEMPOHHUX JEPEB PIIIEHD 10 IIYMY Y BXITHUX
JAHUX JJ5 3AJTAUI KJTACUPIKAILIL 306PAKEHD

Y pobomi docnioscyemuves cmitikicms Mooenel HellpOHHUX 0epes piuieHb, SIKL 00 €OHYIomb apXimeKkmy-
DY HelpoHHUX Mepedc | 0epes piuienb, 00 wymy y 6XIOHUX OaHux 01 Kaacugikayii 306padicens. byno 3a-
NPONOHOBAHO BUKOPUCHAMU 08A MEMOOU HABYUANHS 0/ NIOGUWEHHS CINILIKOCMI MoOeiell, SIKI NOYamKo80
BUKOPUCIOBYBANUCS 8 320PMKOBUX HEUPOHHUX Mepedicax. 3auymuents 30opasicens 3 nabopy danux CIFAR-
10 8i06ysacmuvcs 3a 00NOMO2010 Memoody 2ayciecbko2o posmummsi. Byno pozensanymo enius memooie niogu-
WieHHs cmiikocmi Ha Mooenell HeUPOHHUX Oepes piuiels | NOKA3AHO, WO CMIUKICIb Mooenell 00 wymy y
BXIOHUX OAHUX 3HAYHO NOKPAUYEMBCAL.

KurouoBi ciioBa: HelipoHHI epeBa pillleHb, MAaIIMHHE HABYAHHS, CTilKICTh, 30ypeHHs 300paeHb, Kila-
cudikarrist 300paskeHb, KOMII' IOTEpHHUH 3ip, 3rOPTKOB1 HEHPOHHI MEpPExi.
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