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ENERGY CONSERVATION FOR AUTONOMOUS AGENTS USING
REINFORCEMENT LEARNING

Reinforcement learning (RL) has shown strong potential in autonomous racing for its adaptability to com-
plex and dynamic driving environments. However, most research prioritizes performance metrics such as speed
and lap time. Limited consideration is given to improving energy efficiency, despite its increasing importance in
sustainable autonomous systems. This work investigates the capacity of RL agents to develop multi-objective
driving strategies that balance lap time and fuel consumption by incorporating a fuel usage penalty into the
reward function. To simulate realistic uncertainty, fuel usage is excluded from the observation space, forcing the
agent to infer fuel consumption indirectly. Experiments are conducted using the Soft Actor-Critic algorithm in a
high-fidelity racing simulator, Assetto Corsa, across multiple configurations of vehicles and tracks.

We compare various penalty strengths against the non-penalized agent and evaluate fuel consumption,
lap time, acceleration and braking profiles, gear usage, engine RPM, and steering behavior. Results show
that mild to moderate penalties lead to significant fuel savings with minimal or no loss in lap time. Our
findings highlight the viability of reward shaping for multi-objective optimization in autonomous racing and
contribute to broader efforts in energy-aware RL for control tasks. Results and supplementary material are
available on our project website.

Keywords: reinforcement learning, autonomous driving, energy efficiency, multi-objective optimiza-
tion, Soft Actor-Critic, racing simulation.

Introduction

As autonomous driving technology advances, it has the potential to reshape mobility, offering benefits
ranging from reduced traffic congestion to fewer accidents [5]. Yet, developing autonomous agents involves
complex challenges in perception, planning, control, and decision-making in unpredictable environments [8].

Within this broader field, autonomous racing has emerged as an insightful research area [1]. Like tradi-
tional motorsport, it pushes systems to operate at their limits, making it a powerful testbed for high-perfor-
mance, safe, and efficient algorithms [7]. RL has become a popular approach in this domain due to its
ability to learn from high-dimensional inputs [3, 9]. However, most current RL applications in racing focus
solely on maximizing speed or minimizing lap time [1]. Energy efficiency is rarely addressed, despite its
growing societal and environmental impact.

Our work addresses this gap by investigating how penalizing fuel consumption in the reward function
affects RL agent behavior. We aim to encourage the agent to balance speed and energy efficiency, forcing it
to learn non-trivial trade-offs. Our key hypothesis is that shaping the reward function to penalize fuel use
and incentivize speed leads to more energy-efficient strategies without significantly affecting lap time.

We evaluate agents across multiple vehicle-track combinations and penalty strengths. Results show that
even mild penalties can lead to significant fuel savings with minimal performance loss, in some cases even
outperforming baselines.

The results highlight the importance of reward design in multi-objective RL and contribute to the broad-
er efforts in energy-aware autonomous systems. Supplementary material and additional results are available
at https://nomadflamingo.github.io/assetto_corsa_gym/.

Related Work

Autonomous driving systems have traditionally followed a perception-planning-control pipeline, widely
used in both industry and research [1]. More recently, end-to-end systems using RL have gained popularity due
to their ability to learn complex behaviors through interaction with the environment [3]. RL has been success-
fully applied to tasks ranging from highway driving [11] to aggressive maneuvers like overtaking [10].
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RL has also shown potential in reducing fuel consumption. For instance, Kim et al. [6] trained a neural
network to predict the most fuel-efficient speeds based on road data and trip constraints. Yet, few studies
examine how RL agents adapt when fuel usage is treated as a direct constraint rather than a prediction target.
This leaves open questions regarding agent behavior under explicit fuel usage penalties.

Another limitation lies in the continuous reliance on simplified simulators that often lack realistic
vehicle dynamics; this limits the generalizability of learned policies to real conditions. Additionally, most
RL work assumes full observability, despite real-world agents operating without access to direct sensor
information [3].

Our work addresses these gaps by applying the Soft Actor-Critic (SAC) algorithm in a high-fidelity
simulator, compatible with the OpenAl Gym interface [2]. We introduce fuel efficiency objectives via re-
ward shaping, while excluding fuel level from the observation space to simulate real-world constraints.

Methods

We use the AssettoCorsaGym interface developed by Remonda et al. [7], which integrates a high-fidel-
ity racing simulator, Assetto Corsa, with the OpenAl Gym environment. Figure 1 shows an overview of the
AssettoCorsaGym platform.

Figure 1. The architecture of the AssettoCorsaGym platform [§]

We used the SAC RL algorithm designed specifically for continuous control tasks [4]. It offers strong
performance in autonomous racing benchmarks [7], as well as robustness in tasks that require balance be-
tween speed, control, and long-term planning [4, 7].

The setup included two tracks: Track A (Austria) and Track B (Monza) (Figure 2), and two vehicle
models: a lightweight Formula 3 series car (F317) and a heavier GT3 series car (BMW Z4 GT3). These
selections were made from the Assetto Corsa environment to align with the original AssettoCorsaGym da-
taset.

Track A offers a balanced layout for general driving evaluation, while Track B, containing tighter corner
sequences, tests performance in more challenging conditions.

The two vehicles differ in dynamics. The F3 series car is a lightweight and high-downforce car that is
nimble and agile, while the GT3 is a heavier, high-power vehicle that requires more cautious driving strate-
gies, especially during sharp turns.

We extended the AssettoCorsaGym platform to include fuel usage data in the reward calculation. The
reward function provided in AssettoCorsaGym is based on the car’s velocity and penalizes deviation from
the optimal driving line. It is computed as:

r=v-(l-a-d)

where v is the car’s current speed, d is the L2 distance from the optimal path (as determined by the simula-
tor), and a is a penalty coefficient [7].



70 e-ISNN: 2617-7323. Hayxkosi 3amucku HaYKMA. Komn ' 'totepsi Hayku. 2025. Tom 8

Figure 2. Two tracks chosen for training and evaluating the model in the Assetto Corsa simulator. Red triangles indicate the
start positions and directions.

To encourage fuel efficientcy, we extended the reward function with a penalty for fuel consumption. The
resulting reward function is defined as:

r=v-(l-a-d)y-b-f

where fis the change in fuel since the last timestep, and b controls the strength of the penalty. Notably, fuel
consumption data was excluded from the agent’s observation space to encourage the agent to learn through
implicit feedback.

We experimented with four values of the b coefficient — corresponding to approximate reward reductions
of 2%, 5%, 10%, and 20%, relative to the original reward function formulation. All training runs were per-
formed on an RTX 3060 laptop GPU. On average, it took approximately 48 hours to complete 500 training
episodes.

Experiments

We examined the effect of fuel penalties on RL agent performance during training.

Figure 3 (Top) shows that low to moderate penalties (2-5%) often improved lap times during early train-
ing compared to the baseline, particularly with the GT3 car on Track A. However, higher penalties (20%)
led to suboptimal policies that heavily prioritized fuel savings. On the more complex Track B, penalties
above 2% consistently prevented agents from completing valid laps.

Figure 3 (Bottom) shows the evolution of the fuel consumption rates per lap during training. Across all
setups, penalized agents consistently reduced fuel usage over time. This effect was strong on Track A for
both vehicles. On Track B, fuel savings were less noticeable and limited by the lower magnitude of the
penalty (2%), as higher penalties failed to converge.

Table 1 summarizes the best lap times and corresponding fuel consumption across all setups. On Track
A, penalties led to fuel savings up to 0.4L per lap without major performance drops. On Track B, even mild
penalties degraded performance and convergence. “DNF” values indicate failure to complete valid laps.

Table 1. Comparison of best lap times and corresponding fuel consumption rates per lap
during training across different setups

Fuel Penalty | Random Seed Best Lap Time (s) | | Fuel/Lap for Best Lap |
Track A, Car: GT3 series
0 94.97 1.88
0% 1 93.13 1.80
0 96.59 1.88
5% 1 92.57 1.59
2 95.09 1.47
1 94.35 1.44
10% 2 93.80 1.43
20% 1 115.93 1.01
Track A, Car: F3 series
0% 0 83.62 0.97
5% 0 83.86 0.90
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Fuel Penalty | Random Seed Best Lap Time (s) | | Fuel/Lap for Best Lap |
Track B, Car: GT3 series
0% 0 112.99 2.45
2% 0 113.85 2.39
5% 0 DNF DNF
10% 0 DNF DNF

Figure 3. Top: Evolution of the best lap times per episode during training. Bottom: Best fuel consumption rates per lap.
Different shapes represent different random seeds.

We compared the trained models against the baseline on Track A and Track B. On Track A, we tested
models with 0% and 5% penalties. On Track B, models with 0% and 2% penalties were tested. Models were
selected to have similar lap times for fair fuel efficiency comparison.

As per Table 2, the 5% penalty model on Track A used 0.19L less fuel per lap (10.7% savings) and was
faster by 0.18 seconds (0.2%). On Track B, the 2% penalty model saved 0.064L (2.6%) but was slower by
0.84 seconds (0.7%). Training durations were similar between models.
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Table 2. Performance comparison of agents trained under different fuel penalties
Best Lap Time Mean Lap Time FC for Best Lap | Mean FC Per Lap Training
Fuel Penalt .
: Y OF ® | (ON] (OF Episodes
Track A, Car: GT3 series
0% 92.964 92.975 1.842 1.841 768
5% 92.784 92.796 1.646 1.644 474
Track B, Car: GT3 series
0% 113.198 113.206 2.431 2431 560
2% 114.04 114.203 2.367 2.366 595

Figure 4 shows spatial differences in fuel usage and lap time. Penalized models consumed less fuel, es-
pecially before major turns. On Track A, the penalty also led to faster lap times. On Track B, fuel savings
came at the cost of slower lap times.

Figure 5 shows a comparison of driving behavior between the two models. On Track A, penalized agents
reduced acceleration, braking, steering amplitude, and engine RPM — all factors responsible for the in-
creased fuel consumption, directly or indirectly. On Track B, adaptations were weaker due to the lower
penalty level: acceleration and RPM decreased, braking remained similar, and steering angle amplitude in-
creased.

Figure 4. Spatial differences in fuel consumption and lap times between the two models on Tracks A and B. Percentage
changes are computed as the difference in mean values between penalized and baseline laps. Blue regions indicate a
decrease in the measured metric compared to the baseline, while red regions indicate an increase.

Results

Our experiments show that adding a fuel consumption penalty to the reward function leads to more fuel-
efficient policies without significantly reducing lap time. On easier tracks, mild penalties (<5%) often im-
proved both fuel efficiency and speed, with faster early convergence during training. However, penalties
above 10% led agents to prioritize fuel savings at the cost of increased lap time.

On the more challenging Track B, even a 2% penalty impaired performance, and higher penalties pre-
vented agents from completing valid laps, confirming that penalty effectiveness depends on both track dif-
ficulty and the magnitude of the penalty.
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Figure 5. Spatial differences in driving behavior between the baseline and penalized agents
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The agent learned key driving strategies to reduce fuel usage, mimicking real-world energy-saving strat-
egies used in motorsport, such as maintaining momentum and staying in higher gears. Interestingly, it
avoided early braking, likely suggesting that the agent prioritized maintaining speed over extra fuel savings.

Overall, the SAC algorithm effectively adapted to multi-objective rewards and learned fuel-efficient
driving strategies under realistic constraints.

Discussions

Our work highlights the ability of RL agents to adopt fuel-efficient behaviors given appropriate reward
shaping. However, several limitations remain that could be explored in future work.

First, experiments were limited to two vehicles and two tracks, raising concerns about generalizability. This
is particularly relevant since strategies learned on the simpler Track A did not entirely transfer to Track B.

Second, the agent lacked manual gear-shifting control and could only influence gears indirectly via
speed. This restricted fuel-saving techniques like short-shifting.

Third, the Assetto Corsa simulator runs only in real time, which considerably slows down training
(~48 hours per 500 episodes). This limited our ability to test alternative reward designs or repeat training
with different random seeds to ensure stability.

Notably, only one reward function design was explored. Future work could explore alternative formula-
tions, like penalizing fuel-related factors directly or adding a short history of past fuel usage to the state space.

Finally, fuel usage was excluded from the observation space of the agent to simulate partial observabil-
ity. While it did not prevent the agent from learning efficient strategies, future work could compare out-
comes with and without partial observability.

It would also be valuable to test these methods with other RL algorithms beyond SAC, or with classical
control frameworks such as MPC, LQR, or PID.

Conclusions

Our work explores the ability of RL agents in autonomous racing environments to adapt to multi-objec-
tive tasks that optimize both lap times and energy efficiency. We incorporated a fuel usage penalty into the
reward function and demonstrated that low to moderate penalties lead to considerable fuel savings with
minimal lap-time performance loss. The agents adapted by modifying their driving behaviors — reducing
acceleration, managing engine RPM through gear changes, and increasing steering smoothness. However,
these effects did not transfer to more complex tracks, where even small penalties impaired learning, high-
lighting the need for environment-specific penalty calibration.

Overall, our results suggest that RL can be effectively used to balance performance and energy effi-
ciency. Future work could focus on generalizing these strategies across additional tracks and vehicles, and
explore alternative reward function designs or observational conditions.
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3BEPEKEHHS EHEPI'II 1JI1 ABTOHOMHUX ATEHTIB
I3 BUKOPUCTAHHAM HABYAHHA 3 NIAKPINIVIEHHAM

Memoro pobomu € 00CAIOHCEHHA MOHCIUBOCTHEL ANICOPUMMIB HABUAHHS 3 NIOKPINIEHHAM 018 (opmy-
8aHMsL cmpameziii A8MOHOMHO20 OOIHHS 3 YPAXYBAHHAM KOMNPOMICY MidC eHepeoeekmugHicmio ma
WeUoKicmio.

Poboma peanizosana 3 euxopucmarnuam aneopummy Soft Actor-Critic y cepedosuwyi Assetto Corsa wins-
XOM 000a8anHa wimpaghy 3a umpamy naibHo20 y PYHKYII0 8UHA20poou. J{oCioxHceHO 6NIU8 PI3HUX Di6HIE
wmpaghy Ha eumpamu naIbHO20 Ma WEUOKicmy pyxy. Taxosc npoananizoeano Ki406i N08ediHKO8i 3MIHU,
30KpeMa NPUcKopeHHs, obepmu 08uUcyHa, nepedaii ma amnaimyou Kepmogoz2o Kyma.

KurouoBi cjioBa: aBTOHOMHE BOJIHHS, HABYAHHS 3 MIJKPITUICHHSAM, KOMIIPOMIC IIBHKICTh-C()CKTHB-
HICTh, €HEproe(heKTUBHICTD, CUMYJIALLIS TICPETOHIB.
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