Моделювання технології блокчейн

Автор(и)

  • Микола Сергійович Єщенко Національний університет «Києво-Могилянська академія», Україна https://orcid.org/0000-0002-5549-3565

DOI:

https://doi.org/10.18523/2617-3808.2024.7.51-57

Ключові слова:

блокчейн, мультиагентні системи, моделювання

Анотація

У статті розглянуто ключові характеристики технології блокчейну і підходи до комплексного моделювання блокчейну з відтворенням усіх його атрибутів. Визначено найбільш перспективний спосіб моделювання для подальшого дослідження.

Біографія автора

Микола Сергійович Єщенко, Національний університет «Києво-Могилянська академія»

студент PhD програми «Комп’ютерні науки» факультету інформатики Національного університету «Києво-Могилянська академія», m.yeshchenko@ukma.edu.ua

Посилання

  1. Alharby, M., & van Moorsel, A. (2020). BlockSim: An extensible simulation tool for blockchain systems. Frontiers in Blockchain, 3. https://doi.org/10.3389/fbloc.2020.00028.
  2. Androulaki, E., et al. (2018). Hyperledger fabric. EuroSys ’18: Thirteenth EuroSys Conference, Porto, Portugal. https://doi.org/10.1145/3190508.3190538.
  3. Buchman, E., Kwon, J., & Milosevic, Z. (2018). The latest gossip on BFT consensus. arXiv. https://doi.org/10.48550/arXiv.1807.04938.
  4. Buterin, V. (2014). A next-generation smart contract and decentralized application platform. [White paper]. https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalikbuterin.pdf.
  5. Cachin, C. (2011). Introduction to Reliable and Secure Distributed Programming (2nd ed.). Springer Publishing Company.
  6. Eyal, I., & Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. International Conference on Financial Cryptography and Data Security, Christ Church. https://doi.org/10.48550/arXiv.1311.0243.
  7. Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Reading.
  8. Goodman, L. M. (2014). Tezos–A self-amending crypto-ledger white paper. https://www.tezos.com/static/papers/whitepaper.pdf.
  9. Gürcan, Ö. (2019). Multi-agent modelling of fairness for users and miners in blockchains. Communications in Computer and Information Science, 92–99. https://doi.org/10.1007/978-3-030-24299-2_8.
  10. Gürcan, Ö. (2020). On using agent-based modeling and simulation for studying blockchain systems. JFMS 2020 — Les Journées Francophones de la Modélisation et de la Simulation. https://doi.org/10.48550/arXiv.2405.01574.
  11. Hou, C., et al. (2021). SquirRL: Automating attack discovery on blockchain incentive mechanisms with deep reinforcement learning. Proceedings of the Network and Distributed System Security Symposium, San Diego, CA. https://doi.org/10.48550/arXiv.1912.01798.
  12. Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd ed.). Prentice Hall PTR.
  13. Malcolm, G. (2009). Sheaves, objects, and distributed systems. Electronic Notes in Theoretical Computer Science, 225, 3–19. https://doi.org/10.1016/j.entcs.2008.12.063.
  14. Marchesi, L., Marchesi, M., & Tonelli, R. (2020). ABCDE — Agile blockchain DApp engineering. Blockchain: Research and Applications, 1 (1–2), 100002. https://doi.org/10.1016/j.bcra.2020.100002.
  15. Meldman-Floch, W. (2018). Blockchain cohomology. arXiv. https://doi.org/10.48550/arXiv.1805.07047.
  16. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3440802.
  17. Neuder, M., et al. (2020). Selfish behavior in the Tezos proof-of-stake protocol. arXiv. https://doi.org/10.48550/arXiv.1912.02954.
  18. Nowak, T. (2010). Topology in distributed computing. [Master’s thesis]. Vienna, Austria. https://publik.tuwien.ac.at/files/PubDat_194085.pdf.
  19. Sagar, P. V., & Kishore, M. P. K. (2019). Sheaf representation of an information system. International Journal of Rough Sets and Data Analysis, 6 (2), 73–83. https://doi.org/10.4018/ijrsda.2019040106.
  20. Sapirshtein, A., Sompolinsky, Y., & Zohar, A. (2016). Optimal selfish mining strategies in bitcoin. International Conference on Financial Cryptography and Data Security. https://doi.org/10.48550/arXiv.1507.06183.
  21. Oliveira, M. T., et al. (2019). Towards a performance evaluation of private blockchain frameworks using a realistic workload. 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France. https://doi.org/10.1109/icin.2019.8685888.
  22. Wolfram, D., & Goguen, J. (1991). A sheaf semantics for FOOPS expressions. Proceedings of the Object-Based Concurrent Computing, ECOOP’91 Workshop, Geneva. https://www.researchgate.net/publication/220842390_A_Sheaf_Semantics_for_FOOPS_Expressions.
  23. Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. [White paper]. http://cryptochainuni.com/wp-content/uploads/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf.
  24. Wooldridge, M. (2009). An Introduction to MultiAgent Systems (2nd ed.). John Wiley & Sons.
  25. Zhang, J., et al. (2020). SkyChain: A deep reinforcement learning-empowered dynamic blockchain sharding system. ICPP ’20: 49th International Conference on Parallel Processing, Edmonton, AB, Canada. https://doi.org/10.1145/3404397.3404460.

##submission.downloads##

Опубліковано

2025-05-12